留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review

Yingying Wang Shixun Dai

Yingying Wang, Shixun Dai. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX. doi: 10.1186/s43074-021-00031-3
引用本文: Yingying Wang, Shixun Dai. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX. doi: 10.1186/s43074-021-00031-3
Yingying Wang, Shixun Dai. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX. doi: 10.1186/s43074-021-00031-3
Citation: Yingying Wang, Shixun Dai. Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review[J]. PhotoniX. doi: 10.1186/s43074-021-00031-3

Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review

doi: 10.1186/s43074-021-00031-3
基金项目: 

National Natural Science Foundations of China (NSFCs) (Nos. 61875094, 62090064), and K.C. Wong Magna Fund in Ningbo University.

Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review

Funds: 

National Natural Science Foundations of China (NSFCs) (Nos. 61875094, 62090064), and K.C. Wong Magna Fund in Ningbo University.

  • 摘要: Chalcogenide (ChG) glasses have the characteristics of a wide transparency window (over 20 μm) and high optical nonlinearity (up to 103 times greater than that of silica glasses), exhibiting great advantages over silica and other soft glasses in optical property at mid-infrared (MIR) wavelength range. These make them excellent candidates for MIR supercontinuum (SC) generation. Over the past decades, great progress has been made in MIR SC generation based on ChG fibers in terms of spectral extension and output power improvement. In this paper, we introduce briefly the properties of ChG glasses and fibers including transmission, nonlinearity, and dispersion, etc. Recent progress in MIR SC generation based on ChG fibers is reviewed from the perspective of pump schemes. We also present novel ChG fibers such as As-free, Te-based, and chalcohalide fibers, which have been explored and employed as nonlinear fibers to achieve broadband SC generation. Moreover, the potential applications of MIR SC sources based on ChG fibers are discussed.
      关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Agrawal GP. Nonlinear fiber optics. Fifth edition. Amsterdam: Elsevier; 2013.
    [2] Price JHV, Feng X, Heidt AM, Brambilla G, Horak P, Poletti F, et al. Supercontinuum generation in non-silica fibers. Opt Fiber Technol. 2012;18(5):327–44. https://doi.org/10.1016/j.yofte.2012.07.013.
    [3] Dudley JM, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys. 2006;78(4):1135–84. https://doi.org/10.1103/RevModPhys.78.1135.
    [4] Alfano RR, Shapiro SL. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett. 1970;24(11):592–4. https://doi.org/10.1103/PhysRevLett.24.592.
    [5] Nicolas C, Alexandre D, Guillaume C, Mathieu D, William R, Claire AG, et al. Supercontinuum laser absorption spectroscopy in the mid-infrared range for identification and concentration estimation of a multi-component atmospheric gas mixture. Proc.SPIE. 2011;8182. https://doi.org/10.1117/12.898227.
    [6] Amiot C, Aalto A, Ryczkowski P, Toivonen J, Genty G. Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source. Appl Phys Lett. 2017;111(6):061103. https://doi.org/10.1063/1.4985263.
    [7] Jahromi EK, Nematollahi M, Pan Q, Abbas MA, Cristescu SM, Harren FJM, et al. Sensitive multi-species trace gas sensor based on a high repetition rate mid-infrared supercontinuum source. Opt Express. 2020;28(18):26091–101. https://doi.org/10.1364/OE.396884.
    [8] Seddon AB. A prospective for new mid-infrared medical endoscopy using chalcogenide glasses. Int J Appl Glas Sci. 2011;2(3):177–91. https://doi.org/10.1111/j.2041-1294.2011.00059.x.
    [9] Moselund P, Petersen C, Dupont S, Agger C, Bang O, Keiding SR. Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared. Proc.SPIE. 2012;83811A. https://doi.org/10.1117/12.920094.
    [10] Petersen CR, Prtljaga N, Farries M, Ward J, Napier B, Lloyd GR, et al. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt Lett. 2018;43(5):999–1002. https://doi.org/10.1364/OL.43.000999.
    [11] Cheung CS, Daniel JMO, Tokurakawa M, Clarkson WA, Liang H. High resolution Fourier domain optical coherence tomography in the 2 μm wavelength range using a broadband supercontinuum source. Opt Express. 2015;23(3):1992–2001. https://doi.org/10.1364/OE.23.001992.
    [12] Israelsen NM, Petersen CR, Barh A, Jain D, Jensen M, Hannesschläger G, et al. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci Appl. 2019;8(11). https://doi.org/10.1038/s41377-019-0122-5.
    [13] Schliesser A, Picqué N, Hänsch TW. Mid-infrared frequency combs. Nat Photonics. 2012;6(7):440–9. https://doi.org/10.1038/nphoton.2012.142.
    [14] Xia C, Kumar M, Kulkarni OP, Islam MN, Terry JFL, Freeman MJ, et al. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Opt Lett. 2006;31(17):2553–5. https://doi.org/10.1364/OL.31.002553.
    [15] Yang W, Zhang B, Xue G, Yin K, Hou J. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system. Opt Lett. 2014;39(7):1849–52. https://doi.org/10.1364/OL.39.001849.
    [16] Qin G, Yan X, Kito C, Liao M, Chaudhari C, Suzuki T, et al. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber. Appl Phys Lett. 2009;95(16):161103.
    [17] Swiderski J, Michalska M, Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked tm-doped fiber laser and amplifier system. Opt Express. 2013;21(7):7851–7. https://doi.org/10.1364/OE.21.007851.
    [18] Yang L, Li Y, Zhang B, Wu T, Zhao Y, Hou J. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration. Photon Res. 2019;7(9):1061–5. https://doi.org/10.1364/PRJ.7.001061.
    [19] Domachuk P, Wolchover NA, Cronin-Golomb M, Wang A, George AK, Cordeiro CMB, et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt Express. 2008;16(10):7161–8. https://doi.org/10.1364/OE.16.007161.
    [20] Liao M, Gao W, Duan Z, Yan X, Suzuki T, Ohishi Y. Supercontinuum generation in short tellurite microstructured fibers pumped by a quasi-cw laser. Opt Lett. 2012;37(11):2127–9. https://doi.org/10.1364/OL.37.002127.
    [21] Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, et al. 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. Opt Lett. 2015;40(6):1081–4. https://doi.org/10.1364/OL.40.001081.
    [22] Saini TS, Kumar A, Kumar SR. Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: A new design and analysis. Opt Commun. 2015;347:13–9. https://doi.org/10.1016/j.optcom.2015.02.049.
    [23] Al-Kadry A, Li L, Amraoui ME, North T, Messaddeq Y, Rochette M. Broadband supercontinuum generation in all-normal dispersion chalcogenide microwires. Opt Lett. 2015;40(20):4687–90. https://doi.org/10.1364/OL.40.004687.
    [24] Sun Y, Dai S, Zhang P, Wang X, Xu Y, Liu Z, et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. Opt Express. 2015;23(18):23472–83. https://doi.org/10.1364/OE.23.023472.
    [25] Zhao Z, Wu B, Wang X, Pan Z, Liu Z, Zhang P, et al. Mid-infrared supercontinuum covering 2.0–16 μm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 2017;11(2):1700005.
    [26] Shiryaev VS, Churbanov MF. Trends and prospects for development of chalcogenide fibers for mid-infrared transmission. J Non-Cryst Solids. 2013;377:225–30.
    [27] Cui S, Chahal R, Boussard-Plédel C, Nazabal V, Doualan JL, Troles J, et al. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies. Molecules. 2013;18(5):5373–88. https://doi.org/10.3390/molecules18055373.
    [28] Slusher RE, Lenz G, Hodelin J, Sanghera J, Shaw LB, Aggarwal ID. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B. 2004;21(6):1146–55. https://doi.org/10.1364/JOSAB.21.001146.
    [29] Yan B, Huang T, Zhang W, Wang J, Yang L, Yang P, et al. Generation of watt-level supercontinuum covering 2-6.5 μm in an all-fiber structured infrared nonlinear transmission system. Opt Express. 2021;29(3):4048–57. https://doi.org/10.1364/OE.415534.
    [30] Borisova ZU. Glassy Semiconductors: Springer; 1981.
    [31] Wang R, Zha CJ, Rode AV, Madden SJ, Luther-Davies B. Thermal characterization of Ge–as–se glasses by differential scanning calorimetry. J Mater Sci-Mater El. 2007;18(1):419–22. https://doi.org/10.1007/s10854-007-9229-1.
    [32] Yang Z, Gulbiten O, Lucas P, Luo T, Jiang S. Long-wave infrared-transmitting optical fibers. J Am Ceram Soc. 2011;94(6):1761–5. https://doi.org/10.1111/j.1551-2916.2010.04313.x.
    [33] Sivakumaran K, Nair CKS. Rapid synthesis of chalcogenide glasses of se–Te–Sb system by microwave irradiation. J Phys D Appl Phys. 2005;38(14):2476–9. https://doi.org/10.1088/0022-3727/38/14/026.
    [34] Thompson D, Danto S, Musgraves JD, Wachtel P, Giroire B, Richardson K. Microwave assisted synthesis of high purity As2Se3 chalcogenide glasses. Physics Chem Glasses Eur J Glass Sci Technol Part B. 2013;54(1):27–34.
    [35] Katsuyama T, Satoh S, Matsumura H. Fabrication of high-purity chalcogenide glasses by chemical vapor deposition. J Appl Phys. 1986;59(5):1446–9. https://doi.org/10.1063/1.336496.
    [36] Tao G, Ebendorff-Heidepriem H, Stolyarov AM, Danto S, Badding JV, Fink Y, et al. Infrared fibers. Adv Opt Photon. 2015;7(2):379–458. https://doi.org/10.1364/AOP.7.000379.
    [37] Pelusi MD, Ta'eed VG, Fu L, Magi E, Lamont MRE, Madden S, et al. Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing. IEEE J Sel Top Quant. 2008;14(3):529–39.
    [38] Sanghera JS, Aggarwal ID. Active and passive chalcogenide glass optical fibers for IR applications: a review. J Non-Cryst Solids. 1999;256–257:6–16.
    [39] Sanghera JS, Florea CM, Shaw LB, Pureza P, Nguyen VQ, Bashkansky M, et al. Non-linear properties of chalcogenide glasses and fibers. J Non-Cryst Solids. 2008;354(2–9):462–7. https://doi.org/10.1016/j.jnoncrysol.2007.06.104.
    [40] Nishii J, Yamashita T, Yamagishi T. Low-loss chalcogenide glass fiber with core-cladding structure. Appl Phys Lett. 1988;53(7):553–4. https://doi.org/10.1063/1.99854.
    [41] Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation. J Am Ceram Soc. 2015;98(5):1389–92. https://doi.org/10.1111/jace.13574.
    [42] Jayasuriya D, Petersen CR, Furniss D, Markos C, Tang Z, Habib MS, et al. Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-as-se-Te chalcogenide step-index fiber. Opt Mater Express. 2019;9(6):2617–29.
    [43] Furniss D, Seddon AB. Towards monomode proportioned fibreoptic preforms by extrusion. J Non-Cryst Solids. 1999;256(99):232–6.
    [44] Jiang C, Wang X, Zhu M, Xu H, Nie Q, Dai S, et al. Preparation of chalcogenide glass fiber using an improved extrusion method. Opt Eng. 2016;55(5):056114. https://doi.org/10.1117/1.OE.55.5.056114.
    [45] Baker C, Rochette M. Highly nonlinear hybrid AsSe-PMMA microtapers. Opt Express. 2010;18(12):12391–8. https://doi.org/10.1364/OE.18.012391.
    [46] Russell P. Photonic crystal fibers. Science. 2003;299(5605):358–62. https://doi.org/10.1126/science.1079280.
    [47] Renversez G, Kuhlmey B, McPhedran R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Opt Lett. 2003;28(12):989–91. https://doi.org/10.1364/OL.28.000989.
    [48] Schuster K, Kobelke J, Grimm S, Schwuchow A, Kirchhof J, Bartelt H, et al. Microstructured fibers with highly nonlinear materials. Opt Quant Electron. 2007;39(12):1057–69. https://doi.org/10.1007/s11082-007-9161-x.
    [49] Wang P, Huang J, Xie S, Troles J, Russell PS. Broadband mid-infrared supercontinuum generation in dispersion-engineered As2S3-silica nanospike waveguides pumped by 2.8 μm femtosecond laser. Photon Res. 2021;9(4):630–6. https://doi.org/10.1364/PRJ.415339.
    [50] Wang Y, Dai S, Li G, Xu D, You C, Han X, et al. 1.4–7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime. Opt Lett. 2017;42(17):3458–61. https://doi.org/10.1364/OL.42.003458.
    [51] Désévédavy F, Renversez G, Brilland L, Houizot P, Troles J, Coulombier Q, et al. Small-core chalcogenide microstructured fibers for the infrared. Appl Opt. 2008;47(32):6014–21. https://doi.org/10.1364/AO.47.006014.
    [52] Brilland L, Smektala F, Renversez G, Chartier T, Troles J, Nguyen TN, et al. Fabrication of complex structures of holey fibers in Chalcogenide glass. Opt Express. 2006;14(3):1280–5. https://doi.org/10.1364/OE.14.001280.
    [53] Coulombier Q, Brilland L, Houizot P, Chartier T, Nguyen TN, Smektala F, et al. Casting method for producing low-loss chalcogenide microstructured optical fibers. Opt Express. 2010;18(9):9107–12. https://doi.org/10.1364/OE.18.009107.
    [54] Ghosh AN, Meneghetti M, Petersen CR, Bang O, Brilland L, Venck S, et al. Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation. J Phys Photonics. 2019;1(4):044003. https://doi.org/10.1088/2515-7647/ab3b1e.
    [55] Troles J, Coulombier Q, Canat G, Duhant M, Renard W, Toupin P, et al. Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. Opt Express. 2010;18(25):26647–54. https://doi.org/10.1364/OE.18.026647.
    [56] Mouawad O, Picot-Clémente J, Amrani F, Strutynski C, Fatome J, Kibler B, et al. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. Opt Lett. 2014;39(9):2684–7. https://doi.org/10.1364/OL.39.002684.
    [57] Mouawad O, Kedenburg S, Steinle T, Steinmann A, Kibler B, Désévédavy F, et al. Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers. Appl Phys B Lasers Opt. 2016;122(6):177. https://doi.org/10.1007/s00340-016-6453-5.
    [58] Shaw LB, Thielen PA, Kung FH, Nguyen VQ, Sanghera JS, Aggarwal ID. IR Supercontinuum eneration in As-Se Photonic crystal fiber. inAdvanced Solid-State Photonics, Technical Digest (Optical Society of America, 2005): TuC5. https://doi.org/10.1364/ASSP.2005.TuC5.
    [59] Wei DP, Galstian TV, Smolnikov IV, Plotnichenko VG, Zohrabyan A. Spectral broadening of femtosecond pulses in a single-mode as-S glass fiber. Opt Express. 2005;13(7):2439–43. https://doi.org/10.1364/OPEX.13.002439.
    [60] Gattass RR, Shaw LB, Nguyen VQ, Pureza PC, Aggarwal ID, Sanghera JS. All-fiber chalcogenide-based mid-infrared supercontinuum source. Opt Fiber Technol. 2012;18(5):345–8. https://doi.org/10.1016/j.yofte.2012.07.003.
    [61] Petersen CR, Møller U, Kubat I, Zhou B, Dupont S, Ramsay J, et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photonics. 2014;8(11):830–4. https://doi.org/10.1038/nphoton.2014.213.
    [62] Hudson DD, Dekker SA, Mägi EC, Judge AC, Jackson SD, Li E, et al. Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy. Opt Lett. 2011;36(7):1122–4. https://doi.org/10.1364/OL.36.001122.
    [63] Hilligsøe KM, Paulsen HN, Thøgersen J, Keiding SR, Larsen JJ. Initial steps of supercontinuum generation in photonic crystal fibers. J Opt Soc Am B. 2003;20(9):1887–93. https://doi.org/10.1364/JOSAB.20.001887.
    [64] Sakamaki K, Nakao M, Naganuma M, Izutsu M. Soliton induced supercontinuum generation in photonic crystal fiber. IEEE J Sel Top Quant. 2004;10(5):876–84. https://doi.org/10.1109/JSTQE.2004.837223.
    [65] Moeser JT, Wolchover NA, Knight JC, Omenetto FG. Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber. Opt Lett. 2007;32(8):952–4. https://doi.org/10.1364/OL.32.000952.
    [66] Cheng T, Kanou Y, Asano K, Deng D, Liao M, Matsumoto M, et al. Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber. Appl Phys Lett. 2014;104(12):662.
    [67] El-Amraoui M, Gadret G, Jules JC, Fatome J, Fortier C, Désévédavy F, et al. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources. Opt Express. 2010;18(25):26655–65. https://doi.org/10.1364/OE.18.026655.
    [68] Rudy CW, Marandi A, Vodopyanov KL, Byer RL. Octave-spanning supercontinuum generation in in situ tapered As2S3 fiber pumped by a thulium-doped fiber laser. Opt Lett. 2013;38(15):2865–8. https://doi.org/10.1364/OL.38.002865.
    [69] Duval S, Bernier M, Fortin V, Genest J, Piché M, Vallée R. Femtosecond fiber lasers reach the mid-infrared. Optica. 2015;2(7):623–6. https://doi.org/10.1364/OPTICA.2.000623.
    [70] Hudson DD, Antipov S, Li L, Alamgir I, Hu T, Amraoui ME, et al. Toward all-fiber supercontinuum spanning the mid-infrared. Optica. 2017;4(10):1163–6. https://doi.org/10.1364/OPTICA.4.001163.
    [71] Thapa R, Gattass RR, Nguyen V, Chin G, Gibson D, Kim W, et al. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development. Opt Lett. 2015;40(21):5074–7. https://doi.org/10.1364/OL.40.005074.
    [72] Cheng T, Nagasaka K, Tuan TH, Xue X, Matsumoto M, Tezuka H, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Opt Lett. 2016;41(9):2117–20. https://doi.org/10.1364/OL.41.002117.
    [73] Møller U, Yu Y, Kubat I, Petersen CR, Gai X, Brilland L, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt Express. 2015;23(3):3282–91. https://doi.org/10.1364/OE.23.003282.
    [74] Petersen CR, Engelsholm RD, Markos C, Brilland L, Caillaud C, Trolès J, et al. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Opt Express. 2017;25(13):15336–48. https://doi.org/10.1364/OE.25.015336.
    [75] Kubat I, Petersen CR, Møller UV, Seddon AB, Benson T, Brilland L, et al. Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt Express. 2014;22(4):3959–67. https://doi.org/10.1364/OE.22.003959.
    [76] Petersen CR, Moselund PM, Petersen C, Møller U, Bang O. Spectral-temporal composition matters when cascading supercontinua into the mid-infrared. Opt Express. 2016;24(2):749–58. https://doi.org/10.1364/OE.24.000749.
    [77] Robichaud LR, Fortin V, Gauthier JC, Châtigny S, Couillard JF, Delarosbil JL, et al. Compact 3–8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber. Opt Lett. 2016;41(20):4605–8. https://doi.org/10.1364/OL.41.004605.
    [78] Martinez RA, Plant G, Guo K, Janiszewski B, Freeman MJ, Maynard RL, et al. Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers. Opt Lett. 2018;43(2):296–9. https://doi.org/10.1364/OL.43.000296.
    [79] Woyessa G, Kwarkye K, Dasa MK, Petersen CR, Sidharthan R, Chen S, et al. Power stable 1.5–10.5 μm cascaded mid-infrared supercontinuum laser without thulium amplifier. Opt Lett. 2021;46(5):1129–32. https://doi.org/10.1364/OL.416123.
    [80] Venck S, St-Hilaire F, Brilland L, Ghosh AN, Chahal R, Caillaud C, et al. 2–10 μm mid-infrared fiber-based supercontinuum laser source: experiment and simulation. Laser Photonics Rev. 2020;14(6):2000011. https://doi.org/10.1002/lpor.202000011.
    [81] Petersen CR, Lotz MB, Woyessa G, Ghosh AN, Sylvestre T, Brilland L, et al. Nanoimprinting and tapering of chalcogenide photonic crystal fibers for cascaded supercontinuum generation. Opt Lett. 2019;44(22):5505–8. https://doi.org/10.1364/OL.44.005505.
    [82] Robichaud LR, Duval S, Pleau LP, Fortin V, Bah ST, Châtigny S, et al. High-power supercontinuum generation in the mid-infrared pumped by a soliton self-frequency shifted source. Opt Express. 2020;28(1):107–15. https://doi.org/10.1364/OE.380737.
    [83] Yin K, Zhang B, Yao J, Yang L, Chen S, Hou J. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers. Opt Lett. 2016;41(5):946–9. https://doi.org/10.1364/OL.41.000946.
    [84] Yang L, Yan B, Zhao R, Wu D, Xu T, Yang P, et al. Ultra-low fusion splicing loss between silica and ZBLAN fiber for all-fiber structured high-power mid-infrared supercontinuum generation. Infrared Phys Techn. 2021;113(103576). https://doi.org/10.1016/j.infrared.2020.103576.
    [85] Curry RJ, Birtwell SW, Mairaj AK, Feng X, Hewak DW. A study of environmental effects on the attenuation of chalcogenide optical fibre. J Non-Cryst Solids. 2005;351(6):477–81. https://doi.org/10.1016/j.jnoncrysol.2004.12.013.
    [86] Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, et al. Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses. Opt Mater Express. 2014;4(5):1011–22.
    [87] Wei W, Wang R, Shen X, Fang L, Luther-Davies B. Correlation between structural and physical properties in Ge–Sb–se glasses. J Phys Chem C. 2013;117(32):16571–6. https://doi.org/10.1021/jp404001h.
    [88] Ou H, Dai S, Zhang P, Liu Z, Wang X, Chen F, et al. Ultrabroad supercontinuum generated from a highly nonlinear Ge–Sb–se fiber. Opt Lett. 2016;41(14):3201–4. https://doi.org/10.1364/OL.41.003201.
    [89] Zhang B, Yu Y, Zhai C, Qi S, Wang Y, Yang A, et al. High brightness 2.2–12 μm mid-infrared Supercontinuum generation in a nontoxic Chalcogenide step-index Fiber. J Am Ceram Soc. 2016;99(8):2565–8. https://doi.org/10.1111/jace.14391.
    [90] Wilhelm AA, Boussard-Plédel C, Coulombier Q, Lucas J, Bureau B, Lucas P. Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Adv Mater. 2007;19(22):3796–800. https://doi.org/10.1002/adma.200700823.
    [91] Yang Z, Lucas P. Tellurium-based far-infrared transmitting glasses. J Am Ceram Soc. 2009;92(12):2920–3. https://doi.org/10.1111/j.1551-2916.2009.03323.x.
    [92] Danto S, Houizot P, Boussard-Pledel C, Zhang XH, Smektala F, Lucas J. A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications. Adv Funct Mater. 2006;16(14):1847–52. https://doi.org/10.1002/adfm.200500645.
    [93] Yuan Y, Yang P, Peng X, Cao Z, Ding S, Zhang N, et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in all-normal dispersion Te-based chalcogenide all-solid microstructured fiber. J. Opt. Soc. Am. B. 2020;37(2):227–32. https://doi.org/10.1364/JOSAB.37.000227.
    [94] Zhang N, Peng X, Wang Y, Dai S, Yuan Y, Su J, et al. Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion. Opt Express. 2019;27(7):10311–9. https://doi.org/10.1364/OE.27.010311.
    [95] Jiao K, Yao J, Zhao Z, Wang X, Si N, Wang X, et al. Mid-infrared flattened supercontinuum generation in all-normal dispersion tellurium chalcogenide fiber. Opt Express. 2019;27(3):2036–43. https://doi.org/10.1364/OE.27.002036.
    [96] Zhao Z, Chen P, Wang X, Xue Z, Tian Y, Jiao K, et al. A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion. J Am Ceram Soc. 2019;102(9):5172–9. https://doi.org/10.1111/jace.16439.
    [97] Jiao K, Yao J, Wang X, Wang X, Zhao Z, Zhang B, et al. 1.2–15.2  μm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region. Opt Lett. 2019;44(22):5545–8. https://doi.org/10.1364/OL.44.005545.
    [98] Zhong M, Liang X, Jiao K, Wang X, Si N, Xu T, et al. Low-loss chalcogenide fiber prepared by double peeled-off extrusion. J Lightwave Technol. 2020;38(16):4533–9. https://doi.org/10.1109/JLT.2020.2992291.
    [99] Rothman LS, Gordon IE, Babikov Y, Barbe A, Benner DC, Bernath PF, et al. The HITRAN2012 molecular spectroscopic database. J Quant Spectrosc Radiat Transf. 2013;130:4–50. https://doi.org/10.1016/j.jqsrt.2013.07.002.
    [100] Amiot C, Ryczkowski P, Aalto A, Toivonen J, Genty G. Multi-component gas detection in the mid-IR. SPIE Newsroom. 2015. https://doi.org/10.1117/2.1201510.006199.
    [101] Kilgus J, Duswald K, Langer G, Brandstetter M. Mid-infrared standoff spectroscopy using a supercontinuum laser with compact Fabry-Pérot filter spectrometers. Appl Spectrosc. 2018;72(4):634–42. https://doi.org/10.1177/0003702817746696.
    [102] Kumar M, Islam MN, Terry FL, Freeman MJ, Chan A, Neelakandan M, et al. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source. Appl Opt. 2012;51(15):2794–807. https://doi.org/10.1364/AO.51.002794.
  • 加载中
计量
  • 文章访问数:  173
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 录用日期:  2021-05-09
  • 网络出版日期:  2021-06-04

目录

    /

    返回文章
    返回