| [1] |
Kubby JA. Adaptive Optics for Biological Imaging. Boca Raton: CRC Press; 2013.
|
| [2] |
Ahn C, Hwang B, Nam K, Jin H, Woo T, Park J-H. Overcoming the penetration depth limit in optical microscopy: adaptive optics and wavefront shaping. J Innovative Optical Health Sci. 2019;12(04):1930002.
|
| [3] |
Booth MJ. Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci Appl. 2014;3(4):e165.
|
| [4] |
Ji N. Adaptive optical fluorescence microscopy. Nat Methods. 2017;14(4):374–80.
|
| [5] |
Wang K, Sun W, Richie CT, Harvey BK, Betzig E, Ji N. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat Commun. 2015;6(1):7276.
|
| [6] |
Tao X, Fernandez B, Azucena O, Fu M, Garcia D, Zuo Y, et al. Adaptive optics confocal microscopy using direct wavefront sensing. Opt Lett. 2011;36(7):1062–4.
|
| [7] |
Azucena O, Crest J, Kotadia S, Sullivan W, Tao X, Reinig M, et al. Adaptive optics wide-field microscopy using direct wavefront sensing. Opt Lett. 2011;36(6):825–7.
|
| [8] |
Débarre D, Botcherby EJ, Watanabe T, Srinivas S, Booth MJ, Wilson T. Image-based adaptive optics for two-photon microscopy. Opt Lett. 2009;34(16):2495–7.
|
| [9] |
Débarre D, Booth MJ, Wilson T. Image based adaptive optics through optimisation of low spatial frequencies. Opt Express. 2007;15(13):8176–90.
|
| [10] |
Booth MJ. Wavefront sensorless adaptive optics for large aberrations. Opt Lett. 2007;32(1):5–7.
|
| [11] |
Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods. 2010;7(2):141–7.
|
| [12] |
Chen W, Natan RG, Yang Y, Chou S-W, Zhang Q, Isacoff EY, et al. In vivo volumetric imaging of calcium and glutamate activity at synapses with high spatiotemporal resolution. Nat Commun. 2021;12(1):6630.
|
| [13] |
Ji N, Sato TR, Betzig E. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci. 2012;109(1):22.
|
| [14] |
Milkie DE, Betzig E, Ji N. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination. Opt Lett. 2011;36(21):4206–8.
|
| [15] |
Wang C, Liu R, Milkie DE, Sun W, Tan Z, Kerlin A, et al. Multiplexed aberration measurement for deep tissue imaging in vivo. Nat Methods. 2014;11(10):1037–40.
|
| [16] |
Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2011;5(1):81–101.
|
| [17] |
Gould TJ, Burke D, Bewersdorf J, Booth MJ. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express. 2012;20(19):20998–1009.
|
| [18] |
Patton BR, Burke D, Owald D, Gould TJ, Bewersdorf J, Booth MJ. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt Express. 2016;24(8):8862–76.
|
| [19] |
Wang P, Slipchenko MN, Mitchell J, Yang C, Potma EO, Xu X, et al. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nat Photonics. 2013;7(6):449–53.
|
| [20] |
Zhao G, Rong Z, Kuang C, Zheng C, Liu X. 3D fluorescence emission difference microscopy based on spatial light modulator. J Innov Optical Health Sci. 2016;9(03):1641003.
|
| [21] |
Tian N, Fu L, Gu M. Resolution and contrast enhancement of subtractive second harmonic generation microscopy with a circularly polarized vortex beam. Sci Rep. 2015;5(1):13580.
|
| [22] |
Southwell WH. Wave-front estimation from wave-front slope measurements. J Opt Soc Am. 1980;70(8):998–1006.
|
| [23] |
Panagopoulou SI, Neal DP. Zonal matrix iterative method for wavefront reconstruction from gradient measurements. J Refract Surg. 2005;21(5):S563–S9.
|
| [24] |
Kuang C, Li S, Liu W, Hao X, Gu Z, Wang Y, et al. Breaking the diffraction barrier using fluorescence emission difference microscopy. Sci Rep. 2013;3(1):1441.
|
| [25] |
Dehez H, Piché M, De Koninck Y. Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging. Opt Express. 2013;21(13):15912–25.
|
| [26] |
Rodríguez C, Chen A, Rivera JA, Mohr MA, Liang Y, Natan RG, et al. An adaptive optics module for deep tissue multiphoton imaging in vivo. Nat Methods. 2021;18(10):1259–64.
|
| [27] |
Wang C, Ji N. Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy. Opt Lett. 2012;37(11):2001–3.
|
| [28] |
Leutenegger M, Rao R, Leitgeb RA, Lasser T. Fast focus field calculations. Opt Express. 2006;14(23):11277–91.
|
| [29] |
Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21(11):1369–77.
|
| [30] |
Zhou W, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–12.
|
| [31] |
Qi S, Li H, Lu L, Qi Z, Liu L, Chen L, et al. Long-term intravital imaging of the multicolor-coded tumor microenvironment during combination immunotherapy. eLife. 2016;5:e14756.
|
| [32] |
Shen Z, Lu Z, Chhatbar PY, O'Herron P, Kara P. An artery-specific fluorescent dye for studying neurovascular coupling. Nat Methods. 2012;9(3):273–6.
|