留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy

San Kim, Tae-In Jeong, Robert A. Taylor, Kwangseuk Kyhm, Young-Jin Kim, Seungchul Kim. Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy[J]. PhotoniX. doi: 10.1186/s43074-025-00170-x
Citation: San Kim, Tae-In Jeong, Robert A. Taylor, Kwangseuk Kyhm, Young-Jin Kim, Seungchul Kim. Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy[J]. PhotoniX. doi: 10.1186/s43074-025-00170-x

doi: 10.1186/s43074-025-00170-x

Interleaved frequency comb by chip-scale acousto-optic phase modulation at polydimethylsiloxane for higher-resolution direct plasmonic comb spectroscopy

Funds: This work was supported by BrainLink program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS- 2023 - 00236798) and BK21 FOUR Program by Pusan National University Research Grant, 2021. This work was supported by the National Research Foundation (NRF) grant funded by the Korean government (RS- 2024 - 00336583) and the Korea government (MSIT) (No. RS- 2024 - 00406152).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Spaun B, et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature. 2016;533:517–20.
    [2] Changala PB, Weichman ML, Lee KF, Fermann ME, Ye J. Rovibrational quantum state resolution of the C60 fullerene. Science. 2019;363:49–54.
    [3] Dantus M, Bowman R, Zewail A. Femtosecond laser observations of molecular vibration and rotation. Nature. 1990;343:737–9.
    [4] Diddams SA, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature. 2007;445:627–30.
    [5] Hashimoto K, Badarla VR, Kawai A, Ideguchi T. Complementary vibrational spectroscopy. Nat Commun. 2019;10:4411.
    [6] Niering M, et al. Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys Rev Lett. 2000;84:5496.
    [7] Ahmadi M, Alves B, Baker C, et al. Observation of the 1S–2S transition in trapped antihydrogen. Nature. 2017;541:506–10.
    [8] Grinin A, et al. Two-photon frequency comb spectroscopy of atomic hydrogen. Science. 2020;370:1061–6.
    [9] Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics. 2009;3:99–102.
    [10] Picqué N, Hänsch TW. Frequency comb spectroscopy. Nat Photonics. 2019;13:146–57.
    [11] Suh M-G, Yang Q-F, Yang KY, Yi X, Vahala KJ. Microresonator soliton dual-comb spectroscopy. Science. 2016;354:600–3.
    [12] Dutt A, et al. On-chip dual-comb source for spectroscopy. Sci Adv. 2018;4: e1701858.
    [13] Marin-Palomo P, Kemal J, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature. 2017;546:274–9.
    [14] Chang L, Liu S, Bowers JE. Integrated optical frequency comb technologies. Nat Photonics. 2022;16:95–108.
    [15] Hänsch TW. Nobel lecture: passion for precision. Rev Mod Phys. 2006;78:1297.
    [16] Eckstein JN, Ferguson A, Hänsch T. High-resolution two-photon spectroscopy with picosecond light pulses. Phys Rev Lett. 1978;40:847.
    [17] Marian A, Stowe MC, Lawall JR, Felinto D, Ye J. United time-frequency spectroscopy for dynamics and global structure. Science. 2004;306:2063–8.
    [18] Cingöz A, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature. 2012;482:68–71.
    [19] Canella A, et al. Low-repetition-rate optical frequency comb. Optica. 2024;11:1–9.
    [20] Ho K-P, Kahn JM. Optical frequency comb generator using phase modulation in amplified circulating loop. IEEE photon Technol Lett. 1993;5:721–5.
    [21] Saleh BEA, Teich MC. Chapter 20. In: Fundamentals of Photonics. 3rd ed. Hoboken: Wiley; 2019.
    [22] Wooten EL, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quant Electron. 2000;6:69–82.
    [23] Snigirev V, Riedhauser A, Lihachev G, et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature. 2023;615:411–7.
    [24] Li M, Ling J, He Y, et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun. 2020;11:4123.
    [25] Zhang M, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature. 2019;568:373–7.
    [26] Rueda A, Sedlmeir F, Kumari M, Leuchs G, Schwefel HG. Resonant electro-optic frequency comb. Nature. 2019;568:378–81.
    [27] Hu Y, et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat Photonics. 2022;16:679–85.
    [28] Chang I. Acousto-optic devices and applications. Handb Opt. 1995;2(12):11-12.54.
    [29] Schrödel Y, Hartmann C, Zheng J, et al. Acousto-optic modulation of gigawatt-scale laser pulses in ambient air. Nat Photonics. 2024;18:54–9.
    [30] Kolle M, Lee S. Progress and opportunities in soft photonics and biologically inspired optics. Adv Mater. 2018;30:1702669.
    [31] Zhang X, Qiu J, Li X, Zhao J, Liu L. Complex refractive indices measurements of polymers in visible and near-infrared bands. Appl Opt. 2020;59:2337–44.
    [32] Wang Q, Han W, Wang Y, Lu M, Dong L. Tape nanolithography: a rapid and simple method for fabricating flexible, wearable nanophotonic devices. Microsyst Nanoeng. 2018;4:31.
    [33] Ludlow AD, Boyd MM, Ye J, Peik E, Schmidt PO. Optical atomic clocks. Rev Mod Phys. 2015;87:637.
    [34] Anh ND, et al. Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy. Nat Phys. 2019;15:132–7.
    [35] Bjorklund GC. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt Lett. 1980;5:15–7.
    [36] Liu N, Cui Y, Khoo B, Zhang A. Damage characteristics of elastic material through a thin membrane using high-intensity focused ultrasound (HIFU). AIP Adv. 2018;8:115123.
    [37] Brick D, Emre E, Grossmann M, Dekorsy T, Hettich M. Picosecond photoacoustic metrology of SiO2 and LiNbO3 layer systems used for high frequency surface-acoustic-wave filters. Appl Sci. 2017;7:822.
    [38] Eschler H, Weidinger F. Acousto−optic properties of dense flint glasses. J Appl Phys. 1975;46:65–70.
    [39] Hong C, Yang S, Ndukaife JC. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat Nanotechnol. 2020;15:908–13.
    [40] Zhang Y, Min C, Dou X, et al. Plasmonic tweezers: for nanoscale optical trapping and beyond. Light Sci Appl. 2021;10:59.
    [41] Nguyen DA, Kim DH, Lee GH, et al. Real-time monitoring of fast gas dynamics with a single-molecule resolution by frequency-comb-referenced plasmonic phase spectroscopy. PhotoniX. 2024;5:22.
    [42] Geng X, Chun B, Seo J, et al. Frequency comb transferred by surface plasmon resonance. Nat Commun. 2016;7:10685.
    [43] Shih T-K, Chen C-F, Ho J-R, Chuang F-T. Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding. Microelectron Eng. 2006;83:2499–503.
    [44] Psaltis D, Quake S, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 2006;442:381–6.
    [45] Li G. Recent advances in coherent optical communication. Optica. 2009;1:279–307.
    [46] Mitchell EW. Coherent laser ranging for precision imaging through flames. Optica. 2018;5:988–95.
    [47] Katori H. Optical lattice clocks and quantum metrology. Nat Photonics. 2011;5:203–10.
    [48] Kondov SS, et al. Molecular lattice clock with long vibrational coherence. Nat Phys. 2019;15:1118–22.
计量
  • 文章访问数:  19
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-09
  • 录用日期:  2025-04-01
  • 修回日期:  2025-03-08
  • 网络出版日期:  2025-04-14

目录

    /

    返回文章
    返回