留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrafast modulation of second harmonic waves through polarization selective interferometric autocorrelation

Ultrafast modulation of second harmonic waves through polarization selective interferometric autocorrelation[J]. PhotoniX. doi: 10.1186/s43074-025-00175-6
引用本文: Ultrafast modulation of second harmonic waves through polarization selective interferometric autocorrelation[J]. PhotoniX. doi: 10.1186/s43074-025-00175-6
Heng Wang, Kingfai Li, Zixian Hu, Qichang Ma, Xinmou Lu, Jiaming Huang, Hoilam Tam, Junhong Deng, Guixin Li. Ultrafast modulation of second harmonic waves through polarization selective interferometric autocorrelation[J]. PhotoniX. doi: 10.1186/s43074-025-00175-6
Citation: Heng Wang, Kingfai Li, Zixian Hu, Qichang Ma, Xinmou Lu, Jiaming Huang, Hoilam Tam, Junhong Deng, Guixin Li. Ultrafast modulation of second harmonic waves through polarization selective interferometric autocorrelation[J]. PhotoniX. doi: 10.1186/s43074-025-00175-6

Ultrafast modulation of second harmonic waves through polarization selective interferometric autocorrelation

doi: 10.1186/s43074-025-00175-6
基金项目: 

This work was supported by the National Natural Science Foundation of China (12161141010) and the National Key Technologies R&D Program of China (2022YFA1404301).

Ultrafast modulation of second harmonic waves through polarization selective interferometric autocorrelation

Funds: 

This work was supported by the National Natural Science Foundation of China (12161141010) and the National Key Technologies R&D Program of China (2022YFA1404301).

  • 摘要: Ultrafast modulation of light is of great importance in optical communications, optical spectroscopy, precision measurement and so on. To achieve better modulation performance, various materials platforms including photonic crystals, two-dimensional materials and plasmonic metasurfaces have been extensively explored. In this work, we demonstrate that a thin β-BaB2O4 which has wide band transparence and large nonlinear coefficient can be used to realize ultrafast modulation of second harmonic waves (SHWs). Under the pumping of two femtosecond laser pulses with perpendicular polarizations and variable time delay, the modulation of SHWs exhibits either slow or fast varying characteristics by using the concept of polarization selective interferometric autocorrelation. Interestingly, these two kinds of modulation behaviors depend on the real and imaginary parts of the pulse-width parameter of the chirped laser pulse. The observed physical mechanism is then utilized to generate and modulate the SHWs carrying orbital angular momentum. The proposed strategy in this work may have important applications in parallel ultrafast optical information processing and optical computing.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562:101–4.
    [2] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat Photonics. 2019;13:359–64.
    [3] Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al. All-optical machine learning using diffractive deep neural networks. Science. 2018;361:1004–8.
    [4] Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljacic M, et al. Inference in artificial intelligence with deep optics and photonics. Nature. 2020;588:39–47.
    [5] McMahon PL. The physics of optical computing. Nat Rev Phys. 2023;5:717–34.
    [6] Savage N. Acousto-optic devices. Nat Photonics. 2010;4:728–9.
    [7] Almeida VR, Barrios CA, Panepucci RR, Lipson M. All-optical control of light on a silicon chip. Nature. 2004;431:1081–4.
    [8] Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics. 2010;4:477–83.
    [9] Shen YR. The principles of nonlinear optics. John Wiley & Sons; 2002.
    [10] Boyd RW. Nonlinear optics. San Diego: Academic; 2019.
    [11] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, et al. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat Photonics. 2019;14:37–43.
    [12] Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat Photonics. 2008;2:185–9.
    [13] Shcherbakov MR, Vabishchevich PP, Shorokhov AS, Chong KE, Choi DY, Staude I, et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 2015;15:6985–90.
    [14] Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016;352:795–7.
    [15] Yang YM, Kelley K, Sachet E, Campione S, Luk TS, Maria JP, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat Photonics. 2017;11:390–5.
    [16] Nicholls LH, Rodriguez-Fortuno FJ, Nasir ME, Cordova-Castro RM, Olivier N, Wurtz GA, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials. Nat Photonics. 2017;11:628–33.
    [17] Alam MZ, Schulz SA, Upham J, De Leon I, Boyd RW. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat Photonics. 2018;12:79–83.
    [18] Zhang Y, Wang Y, Dai Y, Bai X, Hu X, Du L, et al. Chirality logic gates. Sci Adv. 2022;8:eabq8246.
    [19] Chen C, Wu B, Jiang A, You G. A new-type ultraviolet SHG crystal: β-BaB2O4. Sci Sin Ser B. 1985;28:235–43.
    [20] Zhu S, Zhu Y, Qin Y, Wang H, Ge C, Ming N. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3. Phys Rev Lett. 1997;78:2752–5.
    [21] Folcia CL, Ortega J, Vidal R, Sierra T, Etxebarria J. The ferroelectric nematic phase: an optimum liquid crystal candidate for nonlinear optics. Liq Cryst. 2022;49:899–906.
    [22] Yin X, Ye Z, Chenet DA, Ye Y, O’Brien K, Hone JC, et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science. 2014;344:488–90.
    [23] Seyler KL, Schaibley JR, Gong P, Rivera P, Jones AM, Wu S, et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat Nanotechnol. 2015;10:407–11.
    [24] Hong H, Huang C, Ma C, Qi J, Shi X, Liu C, et al. Twist phase matching in two-dimensional materials. Phys Rev Lett. 2023;131:233801.
    [25] Kim B, Jin J, Wang Z, He L, Christensen T, Mele EJ, et al. Three-dimensional nonlinear optical materials from twisted two-dimensional van der Waals interfaces. Nat Photonics. 2023;18:91–8.
    [26] Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6:737–48.
    [27] Lapine M, Shadrivov IV, Kivshar YS. Colloquium: nonlinear metamaterials. Rev Mod Phys. 2014;86:1093–123.
    [28] Li G, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces Nat Rev Mater. 2017;2:17010.
    [29] Klein MW, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science. 2006;313:502–4.
    [30] Konishi K, Higuchi T, Li J, Larsson J, Ishii S, Kuwata-Gonokami M. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys Rev Lett. 2014;112:135502.
    [31] Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics. 2015;9:180–4.
    [32] Taghinejad M, Xu Z, Lee KT, Lian T, Cai W. Transient second-order nonlinear media: breaking the spatial symmetry in the time domain via hot-electron transfer. Phys Rev Lett. 2020;124:013901.
    [33] Sirica N, Orth PP, Scheurer MS, Dai YM, Lee MC, Padmanabhan P, et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat Mater. 2022;21:62–6.
    [34] Cai W, Vasudev AP, Brongersma ML. Electrically controlled nonlinear generation of light with plasmonics. Science. 2011;333:1720–3.
    [35] Klimmer S, Ghaebi O, Gan ZY, George A, Turchanin A, Cerullo G, et al. All-optical polarization and amplitude modulation of second-harmonic generation in atomically thin semiconductors. Nat Photonics. 2021;15:837–42.
    [36] Sinelnik A, Lam SH, Coviello F, Klimmer S, Della Valle G, Choi DY, et al. Ultrafast all-optical second harmonic wavefront shaping. Nat Commun. 2024;15:2507.
    [37] Guo Q, Sekine R, Ledezma L, Nehra R, Dean DJ, Roy A, et al. Femtojoule femtosecond all-optical switching in lithium niobate nanophotonics. Nat Photonics. 2022;16:625–31.
    [38] Wang H, Hu Z, Deng J, Zhang X, Chen J, Li K, et al. All-optical ultrafast polarization switching with nonlinear plasmonic metasurfaces. Sci Adv. 2024;10:eadk3882.
    [39] Weiner A. Ultrafast optics. Hoboken: John Wiley & Sons; 2011.
    [40] Walmsley IA, Dorrer C. Characterization of ultrashort electromagnetic pulses. Adv Opt Photonics. 2009;1:308–437.
    [41] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–9.
    [42] Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics. 2021;15:253–62.
    [43] Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6:488–96.
    [44] Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems. Optica. 2020;7:254–62.
    [45] Wang XL, Cai XD, Su ZE, Chen MC, Wu D, Li L, et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature. 2015;518:516–9.
    [46] Wang K, Titchener JG, Kruk SS, Xu L, Chung HP, Parry M, et al. Quantum metasurface for multiphoton interference and state reconstruction. Science. 2018;361:1104–8.
    [47] Stav T, Faerman A, Maguid E, Oren D, Kleiner V, Hasman E, et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science. 2018;361:1101–4.
    [48] Chong A, Wan C, Chen J, Zhan Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat Photonics. 2020;14:350–4.
    [49] Gui G, Brooks NJ, Kapteyn HC, Murnane MM, Liao CT. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nat Photonics. 2021;15:608–13.
    [50] Beijersbergen MW, Coerwinkel RPC, Kristensen M, Woerdman JP. Helical-wavefront laser beams produced with a spiral phaseplate. Opt Commun. 1994;112:321–7.
    [51] Chen Y, Li Y, Tang W, Tang Y, Hu Y, Hu Z, et al. Centimeter scale color printing with grayscale lithography. Advanced Photonics Nexus. 2022;1:026002.
    [52] Dholakia K, Simpson NB, Padgett MJ, Allen L. Second-harmonic generation and the orbital angular momentum of light. Phys Rev A. 1996;54:3742–5.
    [53] Tang Y, Li K, Zhang X, Deng J, Li G, Brasselet E. Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals. Nat Photonics. 2020;14:658–62.
图(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-01
  • 录用日期:  2025-06-01
  • 修回日期:  2025-04-30
  • 网络出版日期:  2025-06-23

目录

    /

    返回文章
    返回