留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-speed optical coherence manipulation based on lithium niobate films modulator

High-speed optical coherence manipulation based on lithium niobate films modulator[J]. PhotoniX. doi: 10.1186/s43074-025-00176-5
引用本文: High-speed optical coherence manipulation based on lithium niobate films modulator[J]. PhotoniX. doi: 10.1186/s43074-025-00176-5
Xinlei Zhu, Fengchao Ni, Haigang Liu, Jiayi Yu, Fei Wang, Ya Cheng, Xianfeng Chen, Yangjian Cai. High-speed optical coherence manipulation based on lithium niobate films modulator[J]. PhotoniX. doi: 10.1186/s43074-025-00176-5
Citation: Xinlei Zhu, Fengchao Ni, Haigang Liu, Jiayi Yu, Fei Wang, Ya Cheng, Xianfeng Chen, Yangjian Cai. High-speed optical coherence manipulation based on lithium niobate films modulator[J]. PhotoniX. doi: 10.1186/s43074-025-00176-5

High-speed optical coherence manipulation based on lithium niobate films modulator

doi: 10.1186/s43074-025-00176-5
基金项目: 

National Key Research and Development Project of China (2022YFA1404800)

China Postdoctoral Science Foundation (2022M721992)

National Natural Science Foundation of China (12192254, 12374276, 12304326, 92250304 and W2441005)

Natural Science Foundation of Shandong Province (ZR2023QA081).

High-speed optical coherence manipulation based on lithium niobate films modulator

Funds: 

National Key Research and Development Project of China (2022YFA1404800)

China Postdoctoral Science Foundation (2022M721992)

National Natural Science Foundation of China (12192254, 12374276, 12304326, 92250304 and W2441005)

Natural Science Foundation of Shandong Province (ZR2023QA081).

  • 摘要: Research on the optical coherence manipulation has made significant progress, but the modulation rate of conventional tailoring technology is too low, which has become a key factor hindering its transition from laboratory to practical application. Here, we utilize lithium niobate films (LNF) modulator to achieve high-speed optical coherence manipulation based on its high-speed electro-optical modulation capability. Our experimental modulation rate reaches 350 kHz, which is about 20 times higher than the fastest modulation rate reported so far. This design strategy provides a simple rule for high-speed optical coherence manipulation based on electrooptical modulation, paving the way for further practical applications of optical coherence manipulation technology.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photon. 2021;15:253–62.
    [2] Zhang Y, Wang Y, Wang M, Guo Y, Li X, Chen Y, et al. Multi-focus light-field microscopy for high-speed large-volume imaging. PhotoniX. 2022;3:30.
    [3] Qiao Z, Wan Z, Xie G, Wang J, Qian L, Fan D. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX. 2020;1:1–14.
    [4] Goodman JW. Speckle Phenomena in Optics: Theory and Applications. Englewood: Roberts and Company Publishers; 2007.
    [5] Andrews L, Phillips R. Laser Beam Propagation Through Random Media. 2nd ed. Bellingham: SPIE; 2005.
    [6] Goodman JW. Statistical Optics. New York: Wiley; 2015.
    [7] Yu J, Zhu X, Wang F, Chen Y, Cai Y. Research progress on manipulating spatial coherence structure of light beam and its applications. Prog Quant Electron. 2023;91–92:100486.
    [8] Redding B, Choma MA, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon. 2012;6:355–9.
    [9] Peng Y, Choi S, Kim J, Wetzstein G. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci Adv. 2021;7:eabg5040.
    [10] Batarseh M, Sukhov S, Shen Z, Gemar H, Rezvani R, Dogariu A. Passive sensing around the corner using spatial coherence. Nat Commun. 2018;9:3629.
    [11] Lu X, Shao Y, Zhao C, Konijnenberg S, Zhu X, Tang Y, et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask. Adv Photon. 2019;1:016005.
    [12] Peng D, Huang Z, Liu Y, Chen Y, Wang F, Ponomarenko SA, Cai Y. Optical coherence encryption with structured random light. PhotoniX. 2021;2:1–15.
    [13] Liu Y, Dong Z, Zhu Y, Wang H, Wang F, Chen Y, Cai Y. Three-channel robust optical encryption via engineering coherence Stokes vector of partially coherent light. PhotoniX. 2024;5:8.
    [14] Yu J, Xu Y, Lin S, Zhu X, Gbur G, Cai Y. Longitudinal optical trapping and manipulating Rayleigh particles by spatial nonuniform coherence engineering. Phys Rev A. 2022;106:033511.
    [15] Zhao X, Wang Z, Lu X, Zhang H, Zhu J, Gao J, et al. Ultrahigh precision angular velocity measurement using frequency shift of partially coherent beams. Laser Photonics Rev. 2023;17:2300318.
    [16] Wolf E. Introduction to the Theory of Coherence and Polarization of Light. Cambridge: Cambridge University; 2007.
    [17] Wolf E. New theory of partial coherence in the space-frequency domain. Part I: Spectra and cross spectra of steady-state sources. J Opt Soc Am. 1982;72:343–51.
    [18] Liu L, Liu W, Wang F, Cheng H, Choi DY, Tian J, Cai Y, Chen S. Spatial coherence manipulation on the disorder-engineered statistical photonic platform. Nano Lett. 2022;22:6342–9.
    [19] Wooten EL, Kissa KM. A review of lithium niobate modulators for fber-optic communications systems. IEEE J Sel Top Quantum Electron. 2000;6:69.
    [20] Wang Y, Zhou S, He D, Hu Y, Chen H, Liang W, et al. Electro-optic beam deflection based on a lithium niobate waveguide with microstructured serrated electrodes. Opt Lett. 2016;41:4739.
    [21] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Loncar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562:101.
    [22] He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Liu L. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat Photonics. 2019;13:359.
    [23] Xu M, He M, Zhang H, Jian J, Cai X. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun. 2020;11:3911.
    [24] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams. Phys Lett A. 2003;312:263–7.
    [25] Wolf E, Collett E. Partially coherent sources which produce the same far-field intensity distribution as a laser. Opt Commun. 1978;25:293–6.
    [26] Wang F, Lv H, Chen Y, Cai Y, Korotkova O. Three modal decompositions of Gaussian Schell-model sources: comparative analysis. Opt Express. 2021;29:29676–89.
    [27] Gbur G, Visser TD. Young’s interference experiment: Past, present, and future. Prog Opt. 2022;67:275–343.
图(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-11
  • 录用日期:  2025-06-07
  • 修回日期:  2025-06-02
  • 网络出版日期:  2025-06-12

目录

    /

    返回文章
    返回