[1] |
Vlasov Y. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. IEEE Commun Mag. 2012;50(2):s67–72. https://doi.org/10.1109/MCOM.2012.6146487.
|
[2] |
Shi Y, et al. Silicon photonics for high-capacity data communications. Photon Res. 2022;10(9): A106. https://doi.org/10.1364/PRJ.456772.
|
[3] |
Gnauck AH, et al. High-capacity optical transmission systems. J Lightwave Technol. 2008;26(9):1032–45. https://doi.org/10.1109/JLT.2008.922140.
|
[4] |
Dai D, Bowers JE. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics. 2014;3(4–5):283–311. https://doi.org/10.1515/nanoph-2013-0021.
|
[5] |
Suzaki Y, et al. Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput. IEEE J Sel Top Quantum Electron. 2005;11(1):43–9. https://doi.org/10.1109/JSTQE.2004.841717.
|
[6] |
Snigirev V, et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature. 2023;615(7952):411–7. https://doi.org/10.1038/s41586-023-05724-2.
|
[7] |
Liu H, et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters. LAM. 2023;4(2):1. https://doi.org/10.37188/lam.2023.013.
|
[8] |
Dong P, et al. Silicon photonic devices and integrated circuits. Nanophotonics. 2014;3(4–5):215–28. https://doi.org/10.1515/nanoph-2013-0023.
|
[9] |
S. Pitris et al., “A 400 Gb/s O-band WDM (8×50 Gb/s) Silicon Photonic Ring Modulator-based Transceiver,” in Optical Fiber Communication Conference (OFC) 2020, p. M4H.3, Optica Publishing Group, San Diego, California (2020) https://doi.org/10.1364/OFC.2020.M4H.3].
|
[10] |
Zhao W, et al. Mode‐division‐multiplexing transmitter with anisotropy lithium‐niobate‐on‐insulator photonic waveguides. Laser Photon Rev. 2024; 2400861. https://doi.org/10.1002/lpor.202400861.
|
[11] |
Huang F, et al. Toward large‐scale photonic chips using low‐anisotropy thin‐film lithium‐tantalate. Adv Sci. 2025; 2410345. https://doi.org/10.1002/advs.202410345.
|
[12] |
Powell K, et al. Stable electro-optic modulators using thin-film lithium tantalate. Opt Express. 2024;32(25):44115. https://doi.org/10.1364/OE.538870.
|
[13] |
Wang C, et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature. 2024;629(8013):784–90. https://doi.org/10.1038/s41586-024-07369-1.
|
[14] |
Wong CY, et al. Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning. IEEE Photonics J. 2012;4(4):1095–102. https://doi.org/10.1109/JPHOT.2012.2204734.
|
[15] |
Liu D, et al. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J Lightwave Technol. 2021;39(18):5910–6. https://doi.org/10.1109/JLT.2021.3091724.
|
[16] |
Yu Y, et al. Wavelength-division multiplexing on an etchless Lithium niobate integrated platform. ACS Photonics. 2022;9(10):3253–9. https://doi.org/10.1021/acsphotonics.2c00437.
|
[17] |
Xu H, Shi Y. Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers. IEEE Photon Technol Lett. 2018;30(2):169–72. https://doi.org/10.1109/LPT.2017.2779489.
|
[18] |
Liu D, et al. High-Performance Silicon Photonic Filter Using Subwavelength-Structure Multimode Waveguide Gratings. Laser Photonics Rev. 2023;17(12):2300485. https://doi.org/10.1002/lpor.202300485.
|
[19] |
Li C, et al. Subwavelength silicon photonics for on-chip mode-manipulation. PhotoniX. 2021;2(1):11. https://doi.org/10.1186/s43074-021-00032-2.
|
[20] |
Zhu M, et al. Polarization-insensitive silicon photonic filter with multimode waveguide gratings. J Lightwave Technol. 2024. https://doi.org/10.1109/JLT.2023.3349074.
|
[21] |
Liu D, Dai D. Silicon-based polarization-insensitive optical filter with dual-gratings. Opt Express. 2019;27(15):20704. https://doi.org/10.1364/OE.27.020704.
|
[22] |
Sun C, et al. Tunable narrow-band single-channel add-drop integrated optical filter with ultrawide FSR. PhotoniX. 2022;3(1):12. https://doi.org/10.1186/s43074-022-00056-2.
|
[23] |
Xu M, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun. 2020;11(1):3911. https://doi.org/10.1038/s41467-020-17806-0.
|
[24] |
Wang C, et al. Ultrabroadband thin-film lithium tantalate modulator for high-speed communications. Optica. 2024. https://doi.org/10.1364/OPTICA.537730.
|
[25] |
Liu D, et al. Four-channel CWDM (de)multiplexers using cascaded multimode waveguide gratings. IEEE Photon Technol Lett. 2020;32(4):192–5. https://doi.org/10.1109/LPT.2020.2966073.
|
[26] |
Liu D, Zhang M, Dai D. Low-loss and low-crosstalk silicon triplexer based on cascaded multimode waveguide gratings. Opt Lett. 2019;44(6):1304. https://doi.org/10.1364/OL.44.001304.
|
[27] |
Dai D, et al. 10-Channel Mode (de)multiplexer with Dual Polarizations. LASER PHOTONICS REV. 2018;12(1):1700109. https://doi.org/10.1002/lpor.201700109.
|
[28] |
Liu D, Wu H, Dai D. Silicon multimode waveguide grating filter at 2 μ m. J Lightwave Technol. 2019;37(10):2217–22. https://doi.org/10.1109/JLT.2019.2900439.
|
[29] |
He J, et al. High-performance lithium-niobate-on-insulator optical filter based on multimode waveguide gratings. Opt Express. 2022;30(19):34140. https://doi.org/10.1364/OE.468721.
|
[30] |
He J, et al. First realization of a three-channel lithium-niobate photonic filter for 50G passive optical networks. ACS Photonics. 2023. https://doi.org/10.1021/acsphotonics.3c00936.
|
[31] |
Zhu M, et al. Multi-channel lithium-niobate-on-insulator photonic filter for dense wavelength-division multiplexing. ACS Photonics. 2025. https://doi.org/10.1021/acsphotonics.4c00884.
|
[32] |
Gaur T, et al. Modeling and analysis of device orientation, analog and digital performance of electrode design for high speed electro-optic modulator. Photonics. 2023;10(3):301. https://doi.org/10.3390/photonics10030301.
|
[33] |
Chen C-H, et al. A comb laser-driven DWDM silicon photonic transmitter based on microring modulators. Opt Express. 2015;23(16):21541. https://doi.org/10.1364/OE.23.021541.
|
[34] |
Y. Wang et al., “Silicon Photonics Chip I/O for Ultra High-Bandwidth and Energy-Efficient Die-to-Die Connectivity,” in 2024 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8, IEEE, Denver, CO, USA (2024) https://doi.org/10.1109/CICC60959.2024.10529018].
|
[35] |
T. Akiyama et al., “First Demonstration of Crosstalk-Free (< -38.5 dB) 32-ch DWDM Demultiplexer on Standard Si PIC Platform,” in Optical Fiber Communication Conference (OFC) 2022, p. Th4C.2, Optica Publishing Group, San Diego, California (2022) https://doi.org/10.1364/OFC.2022.Th4C.2].
|
[36] |
Huang B, et al. 100 Gb/s silicon photonic WDM transmitter with misalignment-tolerant surface-normal optical interfaces. Micromachines. 2019;10(5):336. https://doi.org/10.3390/mi10050336.
|
[37] |
Daudlin S, et al. Three-dimensional photonic integration for ultra-low-energy, high-bandwidth interchip data links. Nat Photon. 2025;19(5):502–9. https://doi.org/10.1038/s41566-025-01633-0.
|
[38] |
Chen K, et al. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform. J Semicond. 2022;43(11): 112301. https://doi.org/10.1088/1674-4926/43/11/112301.
|
[39] |
H. Liu et al., “First demonstration of lithium niobate photonic chip for dense wavelength-division multiplexing transmitters,” Adv. Photon. 6(06) (2024) https://doi.org/10.1117/1.AP.6.6.066001].
|
[40] |
Kharel P, et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica. 2021;8(3):357. https://doi.org/10.1364/OPTICA.416155.
|
[41] |
Wang C, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562(7725):101–4. https://doi.org/10.1038/s41586-018-0551-y.
|
[42] |
Nagarajan R, et al. Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s. Electron Lett. 2006;42(13):771–3. https://doi.org/10.1049/el:20060823.
|