留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An 8 × 200 Gbps wavelength-division multiplexing transmitter using lithium tantalate

Mingyu Zhu, Fei Huang, Dajian Liu, Weihan Wang, Aoyun Gao, Weike Zhao, Shi Zhao, Daixin Lian, Chun Gao, Zejie Yu, Daoxin Dai. An 8 × 200 Gbps wavelength-division multiplexing transmitter using lithium tantalate[J]. PhotoniX. doi: 10.1186/s43074-025-00183-6
Citation: Mingyu Zhu, Fei Huang, Dajian Liu, Weihan Wang, Aoyun Gao, Weike Zhao, Shi Zhao, Daixin Lian, Chun Gao, Zejie Yu, Daoxin Dai. An 8 × 200 Gbps wavelength-division multiplexing transmitter using lithium tantalate[J]. PhotoniX. doi: 10.1186/s43074-025-00183-6

doi: 10.1186/s43074-025-00183-6

An 8 × 200 Gbps wavelength-division multiplexing transmitter using lithium tantalate

Funds: This work was supported by the National Key Research and Development Program of China (2022YFB2803800), the National Natural Science Foundation of China (U23B2047), the Zhejiang Provincial Natural Science Foundation of China (LDT23F04012F05).
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Vlasov Y. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. IEEE Commun Mag. 2012;50(2):s67–72. https://doi.org/10.1109/MCOM.2012.6146487.
    [2] Shi Y, et al. Silicon photonics for high-capacity data communications. Photon Res. 2022;10(9): A106. https://doi.org/10.1364/PRJ.456772.
    [3] Gnauck AH, et al. High-capacity optical transmission systems. J Lightwave Technol. 2008;26(9):1032–45. https://doi.org/10.1109/JLT.2008.922140.
    [4] Dai D, Bowers JE. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics. 2014;3(4–5):283–311. https://doi.org/10.1515/nanoph-2013-0021.
    [5] Suzaki Y, et al. Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput. IEEE J Sel Top Quantum Electron. 2005;11(1):43–9. https://doi.org/10.1109/JSTQE.2004.841717.
    [6] Snigirev V, et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature. 2023;615(7952):411–7. https://doi.org/10.1038/s41586-023-05724-2.
    [7] Liu H, et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters. LAM. 2023;4(2):1. https://doi.org/10.37188/lam.2023.013.
    [8] Dong P, et al. Silicon photonic devices and integrated circuits. Nanophotonics. 2014;3(4–5):215–28. https://doi.org/10.1515/nanoph-2013-0023.
    [9] S. Pitris et al., “A 400 Gb/s O-band WDM (8×50 Gb/s) Silicon Photonic Ring Modulator-based Transceiver,” in Optical Fiber Communication Conference (OFC) 2020, p. M4H.3, Optica Publishing Group, San Diego, California (2020) https://doi.org/10.1364/OFC.2020.M4H.3].
    [10] Zhao W, et al. Mode‐division‐multiplexing transmitter with anisotropy lithium‐niobate‐on‐insulator photonic waveguides. Laser Photon Rev. 2024; 2400861. https://doi.org/10.1002/lpor.202400861.
    [11] Huang F, et al. Toward large‐scale photonic chips using low‐anisotropy thin‐film lithium‐tantalate. Adv Sci. 2025; 2410345. https://doi.org/10.1002/advs.202410345.
    [12] Powell K, et al. Stable electro-optic modulators using thin-film lithium tantalate. Opt Express. 2024;32(25):44115. https://doi.org/10.1364/OE.538870.
    [13] Wang C, et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature. 2024;629(8013):784–90. https://doi.org/10.1038/s41586-024-07369-1.
    [14] Wong CY, et al. Characterization of mid-infrared silicon-on-sapphire microring resonators with thermal tuning. IEEE Photonics J. 2012;4(4):1095–102. https://doi.org/10.1109/JPHOT.2012.2204734.
    [15] Liu D, et al. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J Lightwave Technol. 2021;39(18):5910–6. https://doi.org/10.1109/JLT.2021.3091724.
    [16] Yu Y, et al. Wavelength-division multiplexing on an etchless Lithium niobate integrated platform. ACS Photonics. 2022;9(10):3253–9. https://doi.org/10.1021/acsphotonics.2c00437.
    [17] Xu H, Shi Y. Flat-top CWDM (de)multiplexer based on MZI with bent directional couplers. IEEE Photon Technol Lett. 2018;30(2):169–72. https://doi.org/10.1109/LPT.2017.2779489.
    [18] Liu D, et al. High-Performance Silicon Photonic Filter Using Subwavelength-Structure Multimode Waveguide Gratings. Laser Photonics Rev. 2023;17(12):2300485. https://doi.org/10.1002/lpor.202300485.
    [19] Li C, et al. Subwavelength silicon photonics for on-chip mode-manipulation. PhotoniX. 2021;2(1):11. https://doi.org/10.1186/s43074-021-00032-2.
    [20] Zhu M, et al. Polarization-insensitive silicon photonic filter with multimode waveguide gratings. J Lightwave Technol. 2024. https://doi.org/10.1109/JLT.2023.3349074.
    [21] Liu D, Dai D. Silicon-based polarization-insensitive optical filter with dual-gratings. Opt Express. 2019;27(15):20704. https://doi.org/10.1364/OE.27.020704.
    [22] Sun C, et al. Tunable narrow-band single-channel add-drop integrated optical filter with ultrawide FSR. PhotoniX. 2022;3(1):12. https://doi.org/10.1186/s43074-022-00056-2.
    [23] Xu M, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat Commun. 2020;11(1):3911. https://doi.org/10.1038/s41467-020-17806-0.
    [24] Wang C, et al. Ultrabroadband thin-film lithium tantalate modulator for high-speed communications. Optica. 2024. https://doi.org/10.1364/OPTICA.537730.
    [25] Liu D, et al. Four-channel CWDM (de)multiplexers using cascaded multimode waveguide gratings. IEEE Photon Technol Lett. 2020;32(4):192–5. https://doi.org/10.1109/LPT.2020.2966073.
    [26] Liu D, Zhang M, Dai D. Low-loss and low-crosstalk silicon triplexer based on cascaded multimode waveguide gratings. Opt Lett. 2019;44(6):1304. https://doi.org/10.1364/OL.44.001304.
    [27] Dai D, et al. 10-Channel Mode (de)multiplexer with Dual Polarizations. LASER PHOTONICS REV. 2018;12(1):1700109. https://doi.org/10.1002/lpor.201700109.
    [28] Liu D, Wu H, Dai D. Silicon multimode waveguide grating filter at 2 μ m. J Lightwave Technol. 2019;37(10):2217–22. https://doi.org/10.1109/JLT.2019.2900439.
    [29] He J, et al. High-performance lithium-niobate-on-insulator optical filter based on multimode waveguide gratings. Opt Express. 2022;30(19):34140. https://doi.org/10.1364/OE.468721.
    [30] He J, et al. First realization of a three-channel lithium-niobate photonic filter for 50G passive optical networks. ACS Photonics. 2023. https://doi.org/10.1021/acsphotonics.3c00936.
    [31] Zhu M, et al. Multi-channel lithium-niobate-on-insulator photonic filter for dense wavelength-division multiplexing. ACS Photonics. 2025. https://doi.org/10.1021/acsphotonics.4c00884.
    [32] Gaur T, et al. Modeling and analysis of device orientation, analog and digital performance of electrode design for high speed electro-optic modulator. Photonics. 2023;10(3):301. https://doi.org/10.3390/photonics10030301.
    [33] Chen C-H, et al. A comb laser-driven DWDM silicon photonic transmitter based on microring modulators. Opt Express. 2015;23(16):21541. https://doi.org/10.1364/OE.23.021541.
    [34] Y. Wang et al., “Silicon Photonics Chip I/O for Ultra High-Bandwidth and Energy-Efficient Die-to-Die Connectivity,” in 2024 IEEE Custom Integrated Circuits Conference (CICC), pp. 1–8, IEEE, Denver, CO, USA (2024) https://doi.org/10.1109/CICC60959.2024.10529018].
    [35] T. Akiyama et al., “First Demonstration of Crosstalk-Free (< -38.5 dB) 32-ch DWDM Demultiplexer on Standard Si PIC Platform,” in Optical Fiber Communication Conference (OFC) 2022, p. Th4C.2, Optica Publishing Group, San Diego, California (2022) https://doi.org/10.1364/OFC.2022.Th4C.2].
    [36] Huang B, et al. 100 Gb/s silicon photonic WDM transmitter with misalignment-tolerant surface-normal optical interfaces. Micromachines. 2019;10(5):336. https://doi.org/10.3390/mi10050336.
    [37] Daudlin S, et al. Three-dimensional photonic integration for ultra-low-energy, high-bandwidth interchip data links. Nat Photon. 2025;19(5):502–9. https://doi.org/10.1038/s41566-025-01633-0.
    [38] Chen K, et al. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform. J Semicond. 2022;43(11): 112301. https://doi.org/10.1088/1674-4926/43/11/112301.
    [39] H. Liu et al., “First demonstration of lithium niobate photonic chip for dense wavelength-division multiplexing transmitters,” Adv. Photon. 6(06) (2024) https://doi.org/10.1117/1.AP.6.6.066001].
    [40] Kharel P, et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica. 2021;8(3):357. https://doi.org/10.1364/OPTICA.416155.
    [41] Wang C, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562(7725):101–4. https://doi.org/10.1038/s41586-018-0551-y.
    [42] Nagarajan R, et al. Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s. Electron Lett. 2006;42(13):771–3. https://doi.org/10.1049/el:20060823.
计量
  • 文章访问数:  11
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-07
  • 录用日期:  2025-07-29
  • 修回日期:  2025-07-24
  • 网络出版日期:  2025-08-28

目录

    /

    返回文章
    返回