[1] |
Ellis AD, McCarthy ME, Al Khateeb MAZ, Sorokina M, Doran NJ. Performance limits in optical communications due to fiber nonlinearity. Adv Opt Photonics. 2017;9:429–503.
|
[2] |
Agrawal GP. Nonlinear fiber optics. Fifth edition. Amsterdam: Elsevier; 2013.
|
[3] |
Song J, Ma P, Ren S, Zhang S, Liu W, Xiao H, et al. 2 kW narrow-linewidth Yb-Raman fiber amplifier. Opt Lett. 2021;46:2404–7.
|
[4] |
Jiang X, Joly NY, Finger MA, Babic F, Wong GKL, Travers JC, et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat Photonics. 2015;9:133–9.
|
[5] |
Song Y, Shi X, Wu C, Tang D, Zhang H. Recent progress of study on optical solitons in fiber lasers. Appl Phys Rev. 2019;6:21313.
|
[6] |
Dudley JM, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber. Rev Mod Phys. 2006;78:1135–84.
|
[7] |
Randoux S, Gustave F, Suret P, El G. Optical random Riemann waves in integrable turbulence. Phys Rev Lett. 2017;118:233901.
|
[8] |
Dudley JM, Taylor JR. Ten years of nonlinear optics in photonic crystal fibre. Nat Photonics. 2009;3:85–90.
|
[9] |
Bao X, Chen L. Recent progress in distributed fiber optic sensors. Sensors. 2012;12:8601–39.
|
[10] |
Turitsyn SK, Bale BG, Fedoruk MP. Dispersion-managed solitons in fibre systems and lasers. Phys Rep. 2012;521:135–203.
|
[11] |
Reeves WH, Skryabin DV, Biancalana F, Knight JC, Russell PS, Omenetto FG, et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature. 2003;424:511–5.
|
[12] |
Fermann ME, Kruglov VI, Thomsen BC, Dudley JM, Harvey JD. Self-similar propagation and amplification of parabolic pulses in optical fibers. Phys Rev Lett. 2000;84:6010–3.
|
[13] |
Armaroli A, Conti C, Biancalana F. Rogue solitons in optical fibers: a dynamical process in a complex energy landscape? Optica. 2015;2:497–504.
|
[14] |
Klas R, Kirsche A, Gebhardt M, Buldt J, Stark H, Hädrich S, et al. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX. 2021;2:4.
|
[15] |
Liu M, Wei ZW, Li H, Li TJ, Luo AP, Xu WC, et al. Visualizing the “invisible” soliton pulsation in an ultrafast laser. Laser Photonics Rev. 2020;14:1900317.
|
[16] |
Zhang H, Tang DY, Zhao LM, Xiang N. Coherent energy exchange between components of a vector soliton in fiber lasers. Opt Express. 2008;16:12618–23.
|
[17] |
Renninger WH, Wise FW. Optical solitons in graded-index multimode fibres. Nat Commun. 2013;4:1719.
|
[18] |
Peng J, Boscolo S, Zhao Z, Zeng H. Breathing dissipative solitons in mode-locked fiber lasers. Sci Adv. 2019;5:eaax1110.
|
[19] |
Xu J, Wu J, Ye J, Song J, Yao B, Zhang H, et al. Optical rogue wave in random fiber laser. Photonics Res. 2020;8:1–7.
|
[20] |
Song Y, Wang Z, Wang C, Panajotov K, Zhang H. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv photonics. 2020;2:24001.
|
[21] |
Weidner P, Penzkofer A. Spectral broadening of picosecond laser pulses in optical fibres. Opt Quant Electron. 1993;25:1–25.
|
[22] |
Eftekhar MA, Sanjabi-Eznaveh Z, Lopez-Aviles HE, Benis S, Antonio-Lopez JE, Kolesik M, et al. Accelerated nonlinear interactions in graded-index multimode fibers. Nat Commun. 2019;10:1638.
|
[23] |
Barviau B, Randoux S, Suret P. Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber. Opt Lett. 2006;31:1696.
|
[24] |
Liu W, Ma P, Zhou P, Jiang Z. Spectral property optimization for a narrow-band-filtered superfluorescent fiber source. Laser Phys Lett. 2018;15:25103.
|
[25] |
Mussot A, Lantz E, Maillotte H, Sylvestre T, Finot C, Pitois S. Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. Opt Express. 2004;12:2838–43.
|
[26] |
Suret P, Picozzi A, Randoux S. Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers. Opt Express. 2011;19:17852–63.
|
[27] |
Arun S, Choudhury V, Balaswamy V, Supradeepa VR. Octave-spanning, continuous-wave supercontinuum generation with record power using standard telecom fibers pumped with power-combined fiber lasers. Opt Lett. 2020;45:1172–5.
|
[28] |
Kobtsev S, Smirnov S. Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. Opt Express. 2005;13:6912–8.
|
[29] |
Soh DBS, Koplow JP, Moore SW, Schroder KL, Hsu WL. The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers. Opt Express. 2010;18:22393–405.
|
[30] |
Li Q, Zhang H, Shen X, Hao H, Gong M. Phenomenological model for spectral broadening of incoherent light in fibers via self-phase modulation and dispersion. J Opt. 2016;18:115503.
|
[31] |
Churkin DV, Kolokolov IV, Podivilov EV, Vatnik ID, Nikulin MA, Vergeles SS, et al. Wave kinetics of random fibre lasers. Nat Commun. 2015;6:6214.
|
[32] |
Turitsyn SK, Bednyakova AE, Fedoruk MP, Papernyi SB, Clements WRL. Inverse four-wave mixing and self-parametric amplification in optical fibre. Nat Photonics. 2015;9:608–14.
|
[33] |
Goodman JW. Statistical Optics. 2nd edition. John Wiley & Sons, Inc; 2015.
|
[34] |
Kelleher EJR, Travers JC, Popov SV, Taylor JR. Role of pump coherence in the evolution of continuous-wave supercontinuum generation initiated by modulation instability. J Opt Soc Am B. 2012;29:502–11.
|
[35] |
Castelló-Lurbe D, Vermeulen N, Silvestre E. Towards an analytical framework for tailoring supercontinuum generation. Opt Express. 2016;24:26629–45.
|
[36] |
Pinault SC, Potasek MJ. Frequency broadening by self-phase modulation in optical fibers. J Opt Soc Am B. 1985;2:1318–9.
|
[37] |
Kelleher EJR. Pump wave coherence, modulation instability and their effect on continuous-wave supercontinua. Opt Fiber Technol. 2012;18:268–82.
|
[38] |
Ye J, Xu J, Zhang Y, Song J, Leng J, Zhou P. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source. J Lightwave Technol. 2019;37:3113–8.
|
[39] |
Ropp C, Bachelard N, Barth D, Wang Y, Zhang X. Dissipative self-organization in optical space. Nat Photonics. 2018;12:739–43.
|
[40] |
de Araujo MT, Da Cruz HR, Gouveia-Neto AS. Self-phase modulation of incoherent pulses in single-mode optical fibers. J Opt Soc Am B. 1991;8:2094–6.
|
[41] |
Churkin DV, Gorbunov OA, Smirnov SV. Extreme value statistics in Raman fiber lasers. Opt Lett. 2011;36:3617–9.
|
[42] |
An Y, Huang L, Li J, Leng J, Yang L, Zhou P. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt Express. 2019;27:10127–37.
|
[43] |
Turitsyn SK, Bednyakova AE, Fedoruk MP, Latkin AI, Fotiadi AA, Kurkov AS, et al. Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics. Opt Express. 2011;19:8394–405.
|
[44] |
Travers JC, Popov SV, Taylor JR. A new model for CW supercontinuum generation. In: 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. 2008;paper CMT3. https://doi.org/10.1109/CLEO.2008.4551286.
|
[45] |
Churkin DV, Smirnov SV, Podivilov EV. Statistical properties of partially coherent cw fiber lasers. Opt Lett. 2010;35:3288–90.
|
[46] |
Randoux S, Dalloz N, Suret P. Intracavity changes in the field statistics of Raman fiber lasers. Opt Lett. 2011;36:790–2.
|
[47] |
Suret P, Koussaifi RE, Tikan A, Evain C, Randoux S, Szwaj C, et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat Commun. 2016;7:13136.
|
[48] |
Vanholsbeeck F, Martin-Lopez S, Gonzalez-Herraez M, Coen S. The role of pump incoherence in continuous-wave supercontinuum generation. Opt Express. 2005;13:6615–25.
|
[49] |
Picozzi A, Garnier J, Hansson T, Suret P, Randoux S, Millot G, et al. Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys Rep. 2014;542:1–132.
|