Citation: | Xing Li, Yanlong Yang, Shaohui Yan, Wenyu Gao, Yuan Zhou, Xianghua Yu, Chen Bai, Dan Dan, Xiaohao Xu, Baoli Yao. Artificial potential field-empowered dynamic holographic optical tweezers for particle-array assembly and transformation[J]. PhotoniX. doi: 10.1186/s43074-024-00144-5 |
[1] |
Barredo D, de Léséleuc S, Lienhard V, Lahaye T, Browaeys A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science. 2016;354:1021–3.
|
[2] |
Bluvstein D, et al. Logical quantum processor based on reconfigurable atom arrays. Nature. 2024;626:58–65.
|
[3] |
Guimond P-O, Grankin A, Vasilyev DV, Vermersch B, Zoller P. Subradiant bell states in distant atomic arrays. Phys Rev Lett. 2019;122: 093601.
|
[4] |
Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical tweezers in single-molecule biophysics. Nat Rev Methods Primers. 2021;1:25.
|
[5] |
Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered tools to study intercellular communication. Adv Sci. 2021;8:2002825.
|
[6] |
Yang S, et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat Mater. 2022;21:540–6.
|
[7] |
Huang Y, Wu C, Chen J, Tang J. Colloidal self-assembly: from passive to active systems. Angew Chem Int Ed. 2024;63: e202313885.
|
[8] |
Jiang L, Yang S, Tsang B, Tu M, Granick S. Vector assembly of colloids on monolayer substrates. Nat Commun. 2017;8:15778.
|
[9] |
Chen J, et al. Highly-adaptable optothermal nanotweezers for trapping, sorting, and assembling across diverse nanoparticles. Adv Mater. 2024;36:2309143.
|
[10] |
Nan F, Yan Z. Light-driven self-healing of nanoparticle-based metamolecules. Angew Chem Int Ed. 2019;58:4917–22.
|
[11] |
Millen J, Monteiro TS, Pettit R, Vamivakas AN. Optomechanics with levitated particles. Rep Prog Phys. 2020;83: 026401.
|
[12] |
Marzo A, Drinkwater BW. Holographic acoustic tweezers. Proc Natl Acad Sci USA. 2019;116:84–9.
|
[13] |
Peng J, et al. Scalable electrochromic nanopixels using plasmonics. Sci Adv. 2019;5:eaaw2205.
|
[14] |
Yan J, et al. Optical printing of silicon nanoparticles as strain-driven nanopixels. ACS Appl Mater Interfaces. 2023;15:38682–92.
|
[15] |
Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–6.
|
[16] |
Zhang W, Xu G, Song Y, Wang Y. An obstacle avoidance strategy for complex obstacles based on artificial potential field method. J Field Robotics. 2023;40:1231–44.
|
[17] |
Yang Y, Liao L, Yang H, Li S. An optimal control strategy for multi-UAVs target tracking and cooperative competition. IEEE/CAA J Autom Sinica. 2021;8:1931–47.
|
[18] |
Liu Y, Chen C, Wang Y, Zhang T, Gong Y. A fast formation obstacle avoidance algorithm for clustered UAVs based on artificial potential field. Aerosp Sci Technol. 2024;147: 108974.
|
[19] |
Zhen Q, Wan L, Li Y, Jiang D. Formation control of a multi-AUVs system based on virtual structure and artificial potential field on SE(3). Ocean Eng. 2022;253: 111148.
|
[20] |
Lee W, Kim H, Ahn J. Defect-free atomic array formation using the Hungarian matching algorithm. Phys Rev A. 2017;95: 053424.
|
[21] |
Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986;11:288–90.
|
[22] |
Xu X, et al. Kerker-type intensity-gradient force of light. Laser Photonics Rev. 2020;14:1900265.
|
[23] |
Xu X, Nieto-Vesperinas M. Azimuthal imaginary poynting momentum density. Phys Rev Lett. 2019;123: 233902.
|
[24] |
Zhou Y, et al. Observation of high-order imaginary poynting momentum optomechanics in structured light. Proc Natl Acad Sci. 2022;119: e2209721119.
|
[25] |
Nieto-Vesperinas M, Xu X. The complex maxwell stress tensor theorem: The imaginary stress tensor and the reactive strength of orbital momentum. A novel scenery underlying electromagnetic optical forces. Light Sci Appl. 2022;11:297.
|
[26] |
Hartung L, Seubert M, Welte S, Distante E, Rempe G. A quantum-network register assembled with optical tweezers in an optical cavity. Science. 2024;385:179–83.
|
[27] |
Xue Q, et al. Cryo-CMOS modeling and a 600 MHz cryogenic clock generator for quantum computing applications. Chip. 2023;2: 100065.
|
[28] |
Li T, et al. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles. Opt Lett. 2023;48:255–8.
|
[29] |
Nan F, et al. Creating tunable lateral optical forces through multipolar interplay in single nanowires. Nat Commun. 2023;14:6361.
|
[30] |
Shi Y, et al. Advances in light transverse momenta and optical lateral forces. Adv Opt Photonics. 2023;15:835–906.
|
[31] |
Hu Y, et al. Structured transverse orbital angular momentum probed by a levitated optomechanical sensor. Nat Commun. 2023;14:2638.
|
[32] |
Xu X, et al. Gradient and curl optical torques. Nat Commun. 2024;15:6230.
|
[33] |
Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H. Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt Lett. 1991;16:1463–5.
|
[34] |
Xu X, et al. Optomechanical wagon-wheel effects for bidirectional sorting of dielectric nanoparticles. Laser Photonics Rev. 2021;15:2000546.
|
[35] |
Marzo A, et al. Holographic acoustic elements for manipulation of levitated objects. Nat Commun. 2015;6:8661.
|
[36] |
Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt Express. 2007;15:1913–22.
|
[37] |
Li X, et al. Concentric ring optical traps for orbital rotation of particles. Nanophotonics. 2023;12:4507–17.
|