Turn off MathJax
Article Contents
Xing Li, Yanlong Yang, Shaohui Yan, Wenyu Gao, Yuan Zhou, Xianghua Yu, Chen Bai, Dan Dan, Xiaohao Xu, Baoli Yao. Artificial potential field-empowered dynamic holographic optical tweezers for particle-array assembly and transformation[J]. PhotoniX. doi: 10.1186/s43074-024-00144-5
Citation: Xing Li, Yanlong Yang, Shaohui Yan, Wenyu Gao, Yuan Zhou, Xianghua Yu, Chen Bai, Dan Dan, Xiaohao Xu, Baoli Yao. Artificial potential field-empowered dynamic holographic optical tweezers for particle-array assembly and transformation[J]. PhotoniX. doi: 10.1186/s43074-024-00144-5

Artificial potential field-empowered dynamic holographic optical tweezers for particle-array assembly and transformation

doi: 10.1186/s43074-024-00144-5
Funds:  This work was supported by the National Natural Science Foundation of China (12274181, 12127805, 62135005), the National Key Research and Development Program of China (2021YFF0700303, 2023YFF0613700), and Guangdong Basic and Applied Basic Research Foundation (2023A1515030143).
  • Received Date: 2024-08-07
  • Accepted Date: 2024-09-21
  • Rev Recd Date: 2024-09-09
  • Available Online: 2024-10-15
  • Owing to the ability to parallel manipulate micro-objects, dynamic holographic optical tweezers (HOTs) are widely used for assembly and patterning of particles or cells. However, for simultaneous control of large-scale targets, potential collisions could lead to defects in the formed patterns. Herein we introduce the artificial potential field (APF) to develop dynamic HOTs that enable collision-avoidance micro-manipulation. By eliminating collision risks among particles, this method can maximize the degree of parallelism in multi-particle transport, and it permits the implementation of the Hungarian algorithm for matching the particles with their target sites in a minimal pathway. In proof-of-concept experiments, we employ APF-empowered dynamic HOTs to achieve direct assembly of a defect-free 8 × 8 array of microbeads, which starts from random initial positions. We further demonstrate successive flexible transformations of a 7 × 7 microbead array, by regulating its tilt angle and inter-particle spacing distances with a minimalist path. We anticipate that the proposed method will become a versatile tool to open up new possibilities for parallel optical micromanipulation tasks in a variety of fields.
  • loading
  • [1]
    Barredo D, de Léséleuc S, Lienhard V, Lahaye T, Browaeys A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science. 2016;354:1021–3.
    [2]
    Bluvstein D, et al. Logical quantum processor based on reconfigurable atom arrays. Nature. 2024;626:58–65.
    [3]
    Guimond P-O, Grankin A, Vasilyev DV, Vermersch B, Zoller P. Subradiant bell states in distant atomic arrays. Phys Rev Lett. 2019;122: 093601.
    [4]
    Bustamante CJ, Chemla YR, Liu S, Wang MD. Optical tweezers in single-molecule biophysics. Nat Rev Methods Primers. 2021;1:25.
    [5]
    Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered tools to study intercellular communication. Adv Sci. 2021;8:2002825.
    [6]
    Yang S, et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat Mater. 2022;21:540–6.
    [7]
    Huang Y, Wu C, Chen J, Tang J. Colloidal self-assembly: from passive to active systems. Angew Chem Int Ed. 2024;63: e202313885.
    [8]
    Jiang L, Yang S, Tsang B, Tu M, Granick S. Vector assembly of colloids on monolayer substrates. Nat Commun. 2017;8:15778.
    [9]
    Chen J, et al. Highly-adaptable optothermal nanotweezers for trapping, sorting, and assembling across diverse nanoparticles. Adv Mater. 2024;36:2309143.
    [10]
    Nan F, Yan Z. Light-driven self-healing of nanoparticle-based metamolecules. Angew Chem Int Ed. 2019;58:4917–22.
    [11]
    Millen J, Monteiro TS, Pettit R, Vamivakas AN. Optomechanics with levitated particles. Rep Prog Phys. 2020;83: 026401.
    [12]
    Marzo A, Drinkwater BW. Holographic acoustic tweezers. Proc Natl Acad Sci USA. 2019;116:84–9.
    [13]
    Peng J, et al. Scalable electrochromic nanopixels using plasmonics. Sci Adv. 2019;5:eaaw2205.
    [14]
    Yan J, et al. Optical printing of silicon nanoparticles as strain-driven nanopixels. ACS Appl Mater Interfaces. 2023;15:38682–92.
    [15]
    Grier DG. A revolution in optical manipulation. Nature. 2003;424:810–6.
    [16]
    Zhang W, Xu G, Song Y, Wang Y. An obstacle avoidance strategy for complex obstacles based on artificial potential field method. J Field Robotics. 2023;40:1231–44.
    [17]
    Yang Y, Liao L, Yang H, Li S. An optimal control strategy for multi-UAVs target tracking and cooperative competition. IEEE/CAA J Autom Sinica. 2021;8:1931–47.
    [18]
    Liu Y, Chen C, Wang Y, Zhang T, Gong Y. A fast formation obstacle avoidance algorithm for clustered UAVs based on artificial potential field. Aerosp Sci Technol. 2024;147: 108974.
    [19]
    Zhen Q, Wan L, Li Y, Jiang D. Formation control of a multi-AUVs system based on virtual structure and artificial potential field on SE(3). Ocean Eng. 2022;253: 111148.
    [20]
    Lee W, Kim H, Ahn J. Defect-free atomic array formation using the Hungarian matching algorithm. Phys Rev A. 2017;95: 053424.
    [21]
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986;11:288–90.
    [22]
    Xu X, et al. Kerker-type intensity-gradient force of light. Laser Photonics Rev. 2020;14:1900265.
    [23]
    Xu X, Nieto-Vesperinas M. Azimuthal imaginary poynting momentum density. Phys Rev Lett. 2019;123: 233902.
    [24]
    Zhou Y, et al. Observation of high-order imaginary poynting momentum optomechanics in structured light. Proc Natl Acad Sci. 2022;119: e2209721119.
    [25]
    Nieto-Vesperinas M, Xu X. The complex maxwell stress tensor theorem: The imaginary stress tensor and the reactive strength of orbital momentum. A novel scenery underlying electromagnetic optical forces. Light Sci Appl. 2022;11:297.
    [26]
    Hartung L, Seubert M, Welte S, Distante E, Rempe G. A quantum-network register assembled with optical tweezers in an optical cavity. Science. 2024;385:179–83.
    [27]
    Xue Q, et al. Cryo-CMOS modeling and a 600 MHz cryogenic clock generator for quantum computing applications. Chip. 2023;2: 100065.
    [28]
    Li T, et al. Reversible lateral optical force on phase-gradient metasurfaces for full control of metavehicles. Opt Lett. 2023;48:255–8.
    [29]
    Nan F, et al. Creating tunable lateral optical forces through multipolar interplay in single nanowires. Nat Commun. 2023;14:6361.
    [30]
    Shi Y, et al. Advances in light transverse momenta and optical lateral forces. Adv Opt Photonics. 2023;15:835–906.
    [31]
    Hu Y, et al. Structured transverse orbital angular momentum probed by a levitated optomechanical sensor. Nat Commun. 2023;14:2638.
    [32]
    Xu X, et al. Gradient and curl optical torques. Nat Commun. 2024;15:6230.
    [33]
    Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H. Pattern formation and flow control of fine particles by laser-scanning micromanipulation. Opt Lett. 1991;16:1463–5.
    [34]
    Xu X, et al. Optomechanical wagon-wheel effects for bidirectional sorting of dielectric nanoparticles. Laser Photonics Rev. 2021;15:2000546.
    [35]
    Marzo A, et al. Holographic acoustic elements for manipulation of levitated objects. Nat Commun. 2015;6:8661.
    [36]
    Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt Express. 2007;15:1913–22.
    [37]
    Li X, et al. Concentric ring optical traps for orbital rotation of particles. Nanophotonics. 2023;12:4507–17.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (9) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return