Turn off MathJax
Article Contents
Chen Zhou, Naseer Muhammad, Ruizhe Zhao, Yanjie Chen, Guangzhou Geng, Junjie Li, Xiaowei Li, Xin Li, Yongtian Wang, Lingling Huang. Metasurface enabled broadband, high numerical aperture Laplace differentiator under multiple polarization illumination[J]. PhotoniX. doi: 10.1186/s43074-025-00168-5
Citation: Chen Zhou, Naseer Muhammad, Ruizhe Zhao, Yanjie Chen, Guangzhou Geng, Junjie Li, Xiaowei Li, Xin Li, Yongtian Wang, Lingling Huang. Metasurface enabled broadband, high numerical aperture Laplace differentiator under multiple polarization illumination[J]. PhotoniX. doi: 10.1186/s43074-025-00168-5

Metasurface enabled broadband, high numerical aperture Laplace differentiator under multiple polarization illumination

doi: 10.1186/s43074-025-00168-5
Funds:  L.L. Huang acknowledges technical support from the Laboratory of Microfabrication, Institute of Physics, CAS for sample fabrication.
  • Received Date: 2024-12-26
  • Accepted Date: 2025-03-18
  • Rev Recd Date: 2025-03-14
  • Available Online: 2025-04-03
  • Optical metasurfaces to perform optical analog spatial differentiation operations and image edge detection processing is a currently hot topic. However, some metasurface differentiators are limited by polarization dependence, narrow operating bandwidth, low numerical aperture (NA), requiring for additional polarization elements or digital processing, and under coherent light illumination conditions. Here, we use the optical angular dispersion effect based on resonant dielectric metasurface, to realize the Laplacian differential operation in the real space directly, which can address these critical metrics for p- and s-polarized light. Moreover, the broadband operating range of the metasurface differentiator can be obtained by exciting and detuning the electric toroidal dipole (ETD) and magnetic toroidal dipole (MTD) resonances. We experimentally demonstrate that azimuthal-insensitive Laplace differential operations and dual-polarization second-order two-dimensional edge detection with NA up to 0.64 and spectral bandwidths of nearly 100 nm from 750 to 850 nm. In addition, broadband incoherent and unpolarized edge detection experiments are also carried out with satisfactory performance. Our work will pave the way for free-space realization of high-efficiency, broadband parallel optical-computation and image-processing in machine-vision, biomedical, and optical microscopy.
  • loading
  • [1]
    Wang C, Mei X, Pan L, Wang P, Li W, Gao X, Bo Z, Chen M, Gong W, Han S. Airborne near infrared three-dimensional ghost imaging LiDAR via sparsity constraint. Remote Sensing. 2018;10(5):732.
    [2]
    Tittl A, Leitis A, Liu M, Yesilkoy F, Choi DY, Kivshar YS, Altug H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science. 2018;360(6393):1105–9.
    [3]
    Kim Y, Lee GY, Sung J, Jang J, Lee B. Spiral Metalens for Phase Contrast Imaging. Adv Funct Mater. 2021;32(5):2106050.
    [4]
    Gopakumar M, Lee GY, Choi S, Chao B, Peng Y, Kim J, Wetzstein G. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature. 2024;629(8013):791–7.
    [5]
    Ambs P. Optical computing: a 60-year adventure. Adv Opt Technol. 2010;2010:1–15.
    [6]
    Solli DR, Jalali B. Analog optical computing. Nat Photonics. 2015;9:704–6.
    [7]
    Wang Z, Li T, Soman A, Mao D, Kananen T, Gu T. On-chip wavefront shaping with dielectric metasurface. Nat Commun. 2019;10:3547.
    [8]
    Roberts A, Gómez DE, Davis TJ. Optical image processing with metasurface dark modes. J Opt Soc Am A. 2018;35(9):1575–84.
    [9]
    Tang P, Kim Y, Badloe T, Xiao LL, Yang YG, Kim M, Rho J, Li GQ. Polarization-independent edge detection based on the spin–orbit interaction of light. Opt Express. 2024;32(10):17560.
    [10]
    Tang P, Li XT, Kim Y, Xiao LL, Wu HP, Badloe T, Li GQ, Rho J. Spin hall effect of light in a dichroic polarizer for multifunctional edge detection. ACS Photonic. 2024;11(10):4170–6.
    [11]
    Li Y, Chen S, Liang H, Ren X, Luo L, Ling Y, Liu S, Su Y, Wu ST. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX. 2022;3(1):29.
    [12]
    Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater. 2020;5(8):604–20.
    [13]
    Estakhri NM, Edwards B, Engheta N. Inverse-designed metastructures that solve equations. Science. 2019;363(6433):1333–8.
    [14]
    Chen C, Qi W, Yu Y, Zhang X. On-chip optical spatial-domain integrator based on Fourier optics and metasurface. Nanophotonics. 2021;10(9):2481–6.
    [15]
    Fu W, Zhao D, Li Z, Liu S, Tian C, Huang K. Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci Appl. 2022;11(1):62.
    [16]
    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science. 2014;343(6167):160–3.
    [17]
    Abdollahramezaniy S, Hemmatyary O, Adibi A. Meta-optics for spatial optical analog computing. Nanophotonics. 2020;9(13):4075–95.
    [18]
    Guo C, Xiao M, Minkov M, Shi Y, Fan SH. Photonic crystal slab Laplace operator for image differentiation. Optica. 2018;5(3):251–6.
    [19]
    Abdollahramezani S, Chizari A, Dorche AE, Jamali MV, Salehi JA. Dielectric metasurfaces solve differential and integro-differential equations. Optics Letters. 2017;42:42 (7).
    [20]
    Zhou J, Qian H, Chen CF, Zhao J, Li G, Wu Q, Luo HL, Wen SC, Liu ZW. Optical edge detection based on high-efficiency dielectric metasurface. Proc Natl Acad Sci. 2019;116(23):11137–40.
    [21]
    Huo P, Zhang C, Zhu W, Liu M, Zhang S, Zhang S, Chen L, Lezec HJ, Agrawal A, Lu Y. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett. 2020;20(4):2791–8.
    [22]
    Liang X, Zhou Z, Li Z, Li J, Peng C, Cui H, Wei K, He Z, Yu S, Zheng G. All-Optical Multiplexed Meta-Differentiator for Tri-Mode Surface Morphology Observation. Adv Mater. 2023;35(29):2301505.
    [23]
    Goodman J. Introduction to Fourier optics. 2rd Edition. Englewood: Roberts and Company Publishers; 1995.
    [24]
    Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, Fan SH. Plasmonic computing of spatial differentiation. Nat Commun. 2017;8:15391.
    [25]
    Dong Z, Si J, Yu X, Deng X. Optical spatial differentiator based on subwavelength high-contrast gratings. Appl Physics Letters. 2018;112:112 (18).
    [26]
    Zhou Y, Zheng H, Kravchenko II, Valentine J. Flat optics for image differentiation. Nat Photonics. 2020;14(5):316–23.
    [27]
    Jin C, Yang Y. Transmissive nonlocal multilayer thin film optical filter for image differentiation. Nanophotonics. 2021;10(13):3519–25.
    [28]
    Pors A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic metasurfaces. Nano Lett. 2014;15(1):791–7.
    [29]
    Cordaro A, Kwon H, Sounas D, Koenderink AF, Alù A, Polman A. High-index dielectric metasurfaces performing mathematical operations. Nano Lett. 2019;19(12):8418–23.
    [30]
    Dai C, Li Z, Shi Y, Wan S, Hu W, Li Z. Hydrogel‐Scalable Nanoslide for Switchable Optical Spatial‐Frequency Processing. Laser Photonics Rev. 2023;17(4):2200368.
    [31]
    Kwon H, Cordaro A, Sounas D, Polman A, Alù A. Dual-polarization analog 2D image processing with nonlocal metasurfaces. ACS Photonics. 2020;7(7):1799–805.
    [32]
    Zhou J, Qian H, Zhao J, Tang M, Wu Q, Lei M, Luo H, Wen S, Chen S, Liu Z. Two-dimensional optical spatial differentiation and high-contrast imaging. Natl Sci Rev. 2021;8(6):nwaa176.
    [33]
    Pan D, Wan L, Ouyang M, Zhang W, Potapov AA, Liu W, Liang Z, Feng T, Li Z. Laplace metasurfaces for optical analog computing based on quasi-bound states in the continuum. Photonics Res. 2021;9(9):1758–66.
    [34]
    Zhou Y, Wu W, Chen R, Chen W, Chen R, Ma YG. Analog optical spatial differentiators based on dielectric metasurfaces. Adv Opt Mater. 2019;8(4):1901523.
    [35]
    Komar A, Aoni RA, Xu L, Rahmani M, Miroshnichenko AE, Neshev DN. Edge detection with mie-resonant dielectric metasurfaces. ACS Photonics. 2021;8(3):864–71.
    [36]
    Cotrufo M, Arora A, Singh S, Alù A. Dispersion engineered metasurfaces for broadband, high-NA, high-efficiency, dual-polarization analog image processing. Nat Commun. 2023;14:7078.
    [37]
    Wang H, Guo C, Zhao Z, Fan SH. Compact incoherent image differentiation with nanophotonic structures. ACS Photonics. 2020;7(2):338–43.
    [38]
    Zhang XM, Bai BF, Sun HB, Jin G, Valentine J. Incoherent optoelectronic differentiation based on optimized multilayer films. Laser Photonics Rev. 2022;16(9):2200038.
    [39]
    Tanriover I, Dereshgi SA, Aydin K. Metasurface enabled broadband all optical edge detection in visible frequencies. Nat Commun. 2023;14:6484.
    [40]
    Bracewell R. The Fourier Transform and Its Applications. 3rd Edition. McGraw Hill; 2000.
    [41]
    Suh W, Wang Z, Fan SH. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J Quantum Electron. 2004;40(10):1511–8.
    [42]
    Wesemann L, Rickett J, Song J, et al. Nanophotonics enhanced coverslip for phase imaging in biology. Light Sci Appl. 2021;10(90):2047–7538.
    [43]
    Ji A, Song JH, Li Q, et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat Commun. 2024;13(1):7848.
    [44]
    Esfahani S, Cotrufo M, Alù A, et al. Tailoring space-time nonlocality for event-based image processing metasurfaces. Phys Rev Lett. 2024;133(6): 063801.
    [45]
    Cotrufo M, Esfahani S, Korobkin D, et al. Temporal signal processing with nonlocal optical metasurfaces. NPJ Nanophotonics. 2024;1(1):39.
    [46]
    Badloe T, Kim Y, Kim J, et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano. 2023;17(15):14678–85.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (31) PDF downloads(4) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return