Turn off MathJax
Article Contents
Dewei Zhang, Zhenghao Guo, Chun-Ting Xu, Jianqing Li, Yan-Qing Lu, Wei Hu. Colorless and unidirectional diffractive-type solar concentrators compatible with existing windows[J]. PhotoniX. doi: 10.1186/s43074-025-00178-3
Citation: Dewei Zhang, Zhenghao Guo, Chun-Ting Xu, Jianqing Li, Yan-Qing Lu, Wei Hu. Colorless and unidirectional diffractive-type solar concentrators compatible with existing windows[J]. PhotoniX. doi: 10.1186/s43074-025-00178-3

Colorless and unidirectional diffractive-type solar concentrators compatible with existing windows

doi: 10.1186/s43074-025-00178-3
Funds:  This work was supported by the National Key Research and Development Program of China (2022YFA1203700), the National Natural Science Foundation of China (NSFC) (T2488302, 62035008 and 62405129), and the Natural Science Foundation of Jiangsu Province (BK20233001).
  • Received Date: 2025-05-14
  • Accepted Date: 2025-07-15
  • Rev Recd Date: 2025-06-11
  • Available Online: 2025-07-28
  • Solar concentrators laterally converge solar energy to the side of architectural glass and are attractive candidates for building-integrated photovoltaics. Present available luminescent-type and scattering-type solar concentrators suffer from omnidirectional waveguide induced low efficiency, coloring/hazing restrained aesthetic quality, and poor compatibility with existing architectural glass. Here, we propose a diffractive solar concentrator via directly coating cholesteric liquid crystal (CLC) layers onto the architectural glass. The stacked CLC layers with submicron lateral periodic alignment enable broadband and unidirectional waveguiding inside the glass, and thus supply a high-efficient platform for transmissive solar energy capturing with merits of high aesthetic quality and economic viability. A 1-inch-diameter prototype powers a 10-mW fan outdoors, and a typical 2-m-wide window is calculated to concentrate solar energy by 50 times. The design is expected to bring a global terawatt-scale green energy supply and billion-ton annual carbon emission reduction, meeting with the sustainable development of human society.
  • loading
  • [1]
    Bloom DE, Canning D, Fink G. Urbanization and the wealth of nations. Science. 2008;319(5864):772–5.
    [2]
    Nethercote M. Theorising vertical urbanisation. City. 2018;22(5–6):657–84.
    [3]
    Huang X. The small-drone revolution is coming – scientists need to ensure it will be safe. Nature. 2025;637:29–30.
    [4]
    Zhao X, Zhong Z, Lu X, Yu Y. Potential greenhouse gas risk led by renewable energy crowding out nuclear power. iScience. 2022;25(2):103741.
    [5]
    AsadiAghajari H, Niknam T, Shasadeghi M, Sharifhosseini SM, Taabodi MH, Sheybani E, et al. Analyzing complexities of integrating renewable energy sources into smart grid: a comprehensive review. Appl Energy. 2025;383:125317.
    [6]
    Traverse CJ, Pandey R, Barr MC, Lunt RR. Emergence of highly transparent photovoltaics for distributed applications. Nat Energy. 2017;2(11):849–60.
    [7]
    Xue Q, Xia R, Brabec CJ, Yip H-L. Recent advances in semi-transparent polymer and perovskite solar cells for power generating window applications. Energy Environ Sci. 2018;11(7):1688–709.
    [8]
    Shao Z, Huang A, Cao C, Ji X, Hu W, Luo H, et al. Tri-band electrochromic smart window for energy savings in buildings. Nat Sustain. 2024;7(6):796–803.
    [9]
    Marchini F, Chiatti C, Fabiani C, Pisello AL. Development of an innovative translucent–photoluminescent coating for smart windows applications: an experimental and numerical investigation. Renew Sust Energy Rev. 2023;184:113530.
    [10]
    Nayak PK, Mahesh S, Snaith HJ, Cahen D. Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater. 2019;4(4):269–85.
    [11]
    Nagaraja MR, Biswas WK, Selvan CP. Advancements and challenges in solar photovoltaic technologies: enhancing technical performance for sustainable clean energy – a review. Sol Energy Adv. 2025;5:100084.
    [12]
    McKenna BC, Evans R. Towards efficient spectral converters through materials design for luminescent solar. Adv Mater. 2017;29:1606491.
    [13]
    Debije MG, Verbunt PPC. Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater. 2011;2(1):12–35.
    [14]
    Huang S, Guo H, Xia P, Sun H, Lu C, Feng Y, et al. Integrated device of luminescent solar concentrators and electrochromic supercapacitors for self-powered smart window and display. Nat Commun. 2025;16(1):2085.
    [15]
    Meinardi F, Ehrenberg S, Dhamo L, Carulli F, Mauri M, Bruni F, et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat Photonics. 2017;11(3):177–85.
    [16]
    You Y, Tong X, Imran Channa A, Zhi H, Cai M, Zhao H, et al. High-efficiency luminescent solar concentrators based on composition-tunable eco-friendly core/shell quantum dots. Chem Eng J. 2023;452:139490.
    [17]
    Chen R-T, Chau JLH, Hwang G-L. Design and fabrication of diffusive solar cell window. Renew Energy. 2012;40(1):24–8.
    [18]
    Jin C, Feng C, Chen Y, Zhang T, He H, Na H, et al. Fabricating a scattering–fluorescent luminescent solar concentrator synchronously to achieve broad-spectrum solar energy utilization and light pollution inhibition. Energy Environ Sci. 2024;17(16):5931–40.
    [19]
    Liu X, Gädeke F, Hohgardt M, Walla PJ. Highly efficient and stable luminescent solar concentrator based on light-harvesting and energy-funneling nanodot pools feeding aligned, light-redirecting nanorods. Sol RRL. 2024;8(18):2400273.
    [20]
    Liu X, Benetti D, Liu J, Jin L, Rosei F. Color-tunable multilayered laminated luminescent solar concentrators based on colloidal quantum dots. Nano Energy. 2023;111:108438.
    [21]
    Zhang B, Lyu G, Kelly EA, Evans RC. Förster resonance energy transfer in luminescent solar concentrators. Adv Sci. 2022;9(23):2201160.
    [22]
    Xia P, Sun H, Guo H, Zhao K, Liang C, Lu C, et al. Luminescent solar concentrator with advanced structure for reabsorption loss suppression and synergistic energy harvesting. Adv Funct Mater. 2024;34:2401124.
    [23]
    de Clercq DM, Chan SV, Hardy J, Price MB, Davis NJLK. Reducing reabsorption in luminescent solar concentrators with a self-assembling polymer matrix. J Lumin. 2021;236:118095.
    [24]
    Ding Y, Yang Q, Li Y, Yang Z, Wang Z, Liang H, et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight. 2023;3(1):1–24.
    [25]
    Rafayelyan M, Brasselet E. Spin-to-orbital angular momentum mapping of polychromatic light. Phys Rev Lett. 2018;120(21):213903.
    [26]
    Xiong J, Hsiang EL, He Z, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl. 2021;10(1):216.
    [27]
    Xiong J, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight. 2021;1(1):1–20.
    [28]
    Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7.
    [29]
    Kobashi J, Yoshida H, Ozaki M. Planar optics with patterned chiral liquid crystals. Nat Photonics. 2016;10(6):389–92.
    [30]
    Barboza R, Bortolozzo U, Clerc MG, Residori S. Berry phase of light under bragg reflection by chiral liquid-crystal media. Phys Rev Lett. 2016;117(5):053903.
    [31]
    Zhang D, Xu C-T, Chen Q-M, Cao H, Yu H-G, Tan Q-G, et al. Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration. PhotoniX. 2024;5(1):17.
    [32]
    Chigrinov VG, Kozenkov VM, Kwok HS. Photoalignment of liquid crystalline materials: physics and applications. Chichester, UK: Wiley; 2008.
    [33]
    Yang C, Liu D, Bates M, Barr MC, Lunt RR. How to accurately report transparent solar cells. Joule. 2019;3(8):1803–9.
    [34]
    Yang C, Sheng W, Moemeni M, Bates M, Herrera CK, Borhan B, et al. Ultraviolet and near-infrared dual-band selective-harvesting transparent luminescent solar concentrators. Adv Energy Mater. 2021;11(12):2003581.
    [35]
    Ding Y, Gu Y, Yang Q, Yang Z, Huang Y, Weng Y, et al. Breaking the in-coupling efficiency limit in waveguide-based AR displays with polarization volume gratings. Light Sci Appl. 2024;13(1):185.
    [36]
    Yang C, Atwater HA, Baldo MA, Baran D, Barile CJ, Barr MC, et al. Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule. 2022;6(1):8–15.
    [37]
    Debije MG, Evans RC, Griffini G. Laboratory protocols for measuring and reporting the performance of luminescent solar concentrators. Energy Environ Sci. 2021;14(1):293–301.
    [38]
    Li J, Zhao H, Zhao X, Gong X. Boosting efficiency of luminescent solar concentrators using ultra-bright carbon dots with large Stokes shift. Nanoscale Horiz. 2023;8(1):83–94.
    [39]
    Zhou Y, Benetti D, Fan Z, Zhao H, Ma D, Govorov AO, et al. Near infrared, highly efficient luminescent solar concentrators. Adv Energy Mater. 2016;6(11):1501913.
    [40]
    Meinardi F, Bruni F, Brovelli S. Luminescent solar concentrators for building-integrated photovoltaics. Nat Rev Mater. 2017;2(12):17072.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return