Turn off MathJax
Article Contents
Tsimafei Laryn, Rafael Jumar Chu, Yeonhwa Kim, Eunkyo Ju, Chunghyun Ahn, Hyun-Yong Yu, May Madarang, Hojoong Jung, Won Jun Choi, Daehwan Jung. Multifunctional metamorphic III-V distributed bragg reflectors grown on si substrate for resonant cavity surface emitting devices[J]. PhotoniX. doi: 10.1186/s43074-025-00180-9
Citation: Tsimafei Laryn, Rafael Jumar Chu, Yeonhwa Kim, Eunkyo Ju, Chunghyun Ahn, Hyun-Yong Yu, May Madarang, Hojoong Jung, Won Jun Choi, Daehwan Jung. Multifunctional metamorphic III-V distributed bragg reflectors grown on si substrate for resonant cavity surface emitting devices[J]. PhotoniX. doi: 10.1186/s43074-025-00180-9

Multifunctional metamorphic III-V distributed bragg reflectors grown on si substrate for resonant cavity surface emitting devices

doi: 10.1186/s43074-025-00180-9
Funds:  This work was supported by Korea National Research Foundation (RS-2021-NR057301, RS-2024–00437570) and KIST institutional project (Grant 2E33542).
  • Received Date: 2025-04-15
  • Accepted Date: 2025-07-15
  • Rev Recd Date: 2025-06-04
  • Available Online: 2025-07-28
  • Surface-emitting optoelectronic devices such as vertical cavity surface emitting lasers are important for various applications. However, the devices are typically grown on expensive and small-size III-V substrates. Si substrates can offer much improved scalability, lower cost and higher thermal properties but present significant challenges such as the formation of crystalline defects from the heteroepitaxial growth of III-V semiconductors on Si. Here, we propose multifunctional metamorphic In0.1Ga0.9As/AlAs distributed Bragg reflectors (DBRs) on Si which serve as a bottom mirror with a high reflectivity of 99.8% while simultaneously reducing the crystalline defect density by a factor of three, compared to GaAs/AlAs DBR on Si. The proposed DBR structure also exhibits a crack-free and exceptionally smooth surface morphology with root-mean-square roughness of 1.2 nm, which is five times smoother than the conventional GaAs/AlAs structure on Si. Furthermore, as proof of concept, InAs quantum dot surface-emitting diodes are fabricated on the metamorphic III-V DBR/Si templates and their performances are analyzed in comparison to those grown on native GaAs wafers. A narrow electroluminescence linewidth of 11.5 meV is observed, confirming that the multifunctional metamorphic DBR is promising for a scalable and more techno-economic surface-emitting III-V optoelectronics grown on Si substrates.
  • loading
  • [1]
    Zhang C, Li HJ, Liang D. Antireflective vertical-cavity surface-emitting laser for LiDAR. Nat Commun. 2024;15:1105.
    [2]
    Pan GZ, Xun M, Zhou XL, et al. Harnessing the capabilities of VCSELs: unlocking the potential for advanced integrated photonic devices and systems. Light-Sci Appl. 2024;13:229.
    [3]
    Lee TY, Park Y, Jeon H. Resonant cavity phosphor. Nat Commun. 2023;14:4520.
    [4]
    Miao YF, Cheng L, Zou W, et al. Microcavity top-emission perovskite light-emitting diodes. Light-Sci Appl. 2020;9:89.
    [5]
    Chen QM, Jung YD, Zhou H, et al. GeSn/Ge multiquantum-well vertical-cavity surface-emitting p-i-n structures and diode emitters on a 200 mm ge-on-insulator platform. ACS Photonics. 2023;10:1716–25.
    [6]
    Guo J, Zhao YL, Feifele M, et al. Study of monolithically integrated 940 nm AlGaAs distributed Bragg reflectors on graded GaAsP/bulk Si substrates. Opt Mater Express. 2023;13:1077–91.
    [7]
    Linnik M, Christou A. Effects of Bragg mirror interface grading and layer thickness variations on VCSEL performance at 1.55 μm. Vertical-Cavity Surface-Emitting Lasers V. 2001;4286:162–71.
    [8]
    Zhao YL, Guo J, Feifel M, et al. Monolithic integration of 940 nm AlGaAs distributed Bragg reflectors on bulk Ge substrates. Opt Mater Express. 2022;12:1131–9.
    [9]
    Nakagawa S, Hall E, Almuneau G, et al. 1.55-μm InP-lattice-matched VCSELs with AlGaAsSb-AlAsSb DBRs. Ieee J Sel Top Quant. 2001;7:224–30.
    [10]
    Zhong HC, Yu Y, Zheng ZY, et al. Ultra-low threshold continuous-wave quantum dot mini-BIC lasers. Light-Sci Appl. 2023;12:100.
    [11]
    Tan YZ, Huang YT, Wu D, et al. Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array. Light-Sci Appl. 2025;14:36.
    [12]
    D. Wiedenmann, M. Grabherr, R. Jäger, and R. King, High volume production of single-mode VCSELs (SPIE, 2006).
    [13]
    Lu HY, Tian SC, Tong CZ, et al. Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band. Light-Sci Appl. 2019;8:108.
    [14]
    Liu AY, Bowers J. Photonic integration with Epitaxial III-V on silicon. Ieee J Sel Top Quant. 2018;24:1–2.
    [15]
    Norman JC, Jung D, Wan YT, Bowers JE. Perspective: The future of quantum dot photonic integrated circuits. Apl Photonics. 2018;3:3.
    [16]
    Baker J, Gillgrass S, Allford CP, et al. VCSEL quick fabrication for assessment of large diameter epitaxial wafers. Ieee Photonics J. 2022;14:1.
    [17]
    Gillgrass SJ, Allford CP, Peach T, et al. Impact of thermal oxidation uniformity on 150 mm GaAs- and Ge-substrate VCSELs. J Phys D Appl Phys. 2023;56:154002.
    [18]
    Yang YC, Wan ZY, Chiu CC, et al. 80 Gbps PAM-4 Data Transmission With 940 nm VCSELs Grown on a 330 μm Ge Substrate. Ieee Electr Device L. 2024;45:2070–3.
    [19]
    Bosi M, Attolini G. Germanium: Epitaxy and its applications. Prog Cryst Growth Ch. 2010;56:146–74.
    [20]
    Dunstan DJ. Strain and strain relaxation in semiconductors. J Mater Sci-Mater El. 1997;8:337–75.
    [21]
    Fang SF, Adomi K, Iyer S, et al. Gallium-Arsenide and Other Compound Semiconductors on Silicon. J Appl Phys. 1990;68:R31–58.
    [22]
    Fitzgerald EA. Dislocations in strained-layer epitaxy - theory, experiment, and applications. Mater Sci Rep. 1991;7:91–142.
    [23]
    Kawabe M, Ueda T. Self-Annihilation of antiphase boundary in gaas on Si(100) Grown by molecular-beam epitaxy. Jpn J Appl Phys. 1987;2(26):L944–6.
    [24]
    Shang C, Begley MR, Gianola DS, Bowers JE. Crack propagation in low dislocation density quantum dot lasers epitaxially grown on Si. Apl Mater. 2022;10:1.
    [25]
    Vaisman M, Jain N, Li Q, et al. GaAs solar cells on nanopatterned si substrates. Ieee J Photovolt. 2018;8:1635–40.
    [26]
    Deppe DG, Chand N, Vanderziel JP, Zydzik GJ. Alxga1-Xas-gaas vertical-cavity surface-emitting laser grown on si substrate. Appl Phys Lett. 1990;56:740–2.
    [27]
    Egawa T, Murata Y, Jimbo T, Umeno M. Characterization of AlGaAs/GaAs vertical-cavity surface-emitting laser diode grown on Si substrate by MOCVD. Appl Surf Sci. 1997;117:771–5.
    [28]
    Nahory RE, Pollack MA, Johnston WD, Barns RL. Band-gap versus composition and demonstration of vegards law for In1-Xgaxasyp1-Y lattice matched to Inp. Appl Phys Lett. 1978;33:659–61.
    [29]
    Takano Y, Hisaka M, Fujii N, et al. Reduction of threading dislocations by InGaAs interlayer in GaAs layers grown on Si substrates. Appl Phys Lett. 1998;73:2917–9.
    [30]
    Shang C, Selvidge J, Hughes E, et al. A pathway to thin gaas virtual substrate on on-axis Si (001) with ultralow threading dislocation density. Phys Status Solidi A. 2021;218:2000402.
    [31]
    D. Jung PG. Callahan, B. Shin et al. Low threading dislocation density GaAs growth on on-axis GaP/Si (001)," J Appl Phys. 2017;122.
    [32]
    Adachi S. Gaas, Alas, and Alxga1-Xas - material parameters for use in research and device applications. J Appl Phys. 1985;58:R1–29.
    [33]
    Beanland R, Dunstan DJ, Goodhew PJ. Plastic relaxation and relaxed buffer layers for semiconductor epitaxy. Adv Phys. 1996;45:87–146.
    [34]
    Gourley PL, Drummond TJ, Doyle BL. Dislocation Filtering in Semiconductor Superlattices with Lattice-Matched and Lattice-Mismatched Layer Materials. Appl Phys Lett. 1986;49:1101–3.
    [35]
    Selvidge J, Norman J, Hughes ET, et al. Defect filtering for thermal expansion induced dislocations in III-V lasers on silicon. Appl Phys Lett. 2020;117:2.
    [36]
    Kim Y, Shin HB, Ju E, et al. Impacts of dislocations and residual thermal tension on monolithically integrated InGaP/GaAs/Si triple-junction solar cells. Sol Rrl. 2024;8:2400318.
    [37]
    Fitzgerald EA. The effect of substrate growth area on misfit and threading dislocation densities in mismatched heterostructures. J Vac Sci Technol B. 1989;7:782–8.
    [38]
    Oh S, Jun DH, Shin KW, et al. Control of crack formation for the fabrication of crack-free and self-isolated high-efficiency gallium arsenide photovoltaic cells on silicon substrate. Ieee J Photovolt. 2016;6:1031–5.
    [39]
    Gourley PL, Drummond TJ. Visible, room-temperature, surface-emitting laser using an epitaxial fabry-perot resonator with Algaas/Alas Quarter-wave high reflectors and Algaas/Gaas multiple quantum-wells. Appl Phys Lett. 1987;50:1225–7.
    [40]
    Jewell JL, Scherer A, Mccall SL, et al. Low-threshold electrically pumped vertical-cavity surface-emitting microlasers. Electron Lett. 1989;25:1123–4.
    [41]
    Lee YH, Jewell JL, Scherer A, et al. Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes. Electron Lett. 1989;25:1377–8.
    [42]
    Liu AY, Srinivasan S, Norman J, et al. Quantum dot lasers for silicon photonics [Invited]. Photonics Res. 2015;3:B1–9.
    [43]
    Liu ZZ, Martin M, Baron T, et al. Origin of defect tolerance in InAs/GaAs quantum dot lasers grown on silicon. J Lightwave Technol. 2020;38:240–8.
    [44]
    Chen SM, Li W, Wu J, et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon. Nat Photonics. 2016;10:307-+.
    [45]
    Norman JC, Jung D, Zhang ZY, et al. A review of high-performance quantum dot lasers on silicon. Ieee J Quantum Elect. 2019;55:1.
    [46]
    Shang C, Hughes E, Wan YT, et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica. 2021;8:749–54.
    [47]
    R. Michalzik, "VCSEL fundamentals," in VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers(Springer, 2012), pp. 19–75.
    [48]
    Laryn T, Chu RJ, Kim Y, et al. Reduction of GaAs buffer thickness and its impact on epitaxially integrated III-V quantum dot lasers on a si substrate. ACS Appl Mater Interfaces. 2024;16:30209–17.
    [49]
    Gramlich S, Sebastian J, Weyers M, Hey R. In-plane photoluminescence of vertical cavity surface-emitting laser structures. Physica Status Solidi a Appl Res. 1995;152:293–301.
    [50]
    Hou HQ, Choquette KD, Geib KM, Hammons BE. High-performance 1.06-mu m selectively oxidized vertical-cavity surface-emitting lasers with InGaAs-GaAsP strain-compensated quantum wells. Ieee Photonic Tech L. 1997;9:1057–9.
    [51]
    Schubert EF, Hunt NEJ, Micovic M, et al. Highly efficient light-emitting-diodes with microcavities. Science. 1994;265:943–5.
    [52]
    Hegarty SP, Huyet G, Porta P, et al. Transverse-mode structure and pattern formation in oxide-confined vertical-cavity semiconductor lasers. J Opt Soc Am B. 1999;16:2060–71.
    [53]
    Young DB, Scott JW, Peters FH, et al. Enhanced Performance of Offset-Gain High-Barrier Vertical-Cavity Surface-Emitting Lasers. Ieee J Quantum Elect. 1993;29:2013–22.
    [54]
    D. Jung, R. Herrick, J. Norman et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Appl Phys Lett. 2018;112.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (8) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return