Turn off MathJax
Article Contents
Hongbo Zhang, Pengwei Li, Xiaoyu Yang, Wen Wan, Shu Chen, Guangyou Fang, Yiming Zhu, Songlin Zhuang. Twist-engineered acoustic plasmon nanocavities enable deep-nanoscale terahertz molecular fingerprinting[J]. PhotoniX. doi: 10.1186/s43074-025-00194-3
Citation: Hongbo Zhang, Pengwei Li, Xiaoyu Yang, Wen Wan, Shu Chen, Guangyou Fang, Yiming Zhu, Songlin Zhuang. Twist-engineered acoustic plasmon nanocavities enable deep-nanoscale terahertz molecular fingerprinting[J]. PhotoniX. doi: 10.1186/s43074-025-00194-3

Twist-engineered acoustic plasmon nanocavities enable deep-nanoscale terahertz molecular fingerprinting

doi: 10.1186/s43074-025-00194-3
Funds:  S. Chen acknowledges support of the refractive index of GABA molecules from Dr. Bingwei Liu, Terahertz Technology Innovation Research Institute, University of Shanghai for Science and Technology.
  • Received Date: 2025-04-07
  • Accepted Date: 2025-08-24
  • Rev Recd Date: 2025-08-10
  • Available Online: 2025-11-25
  • Field-enhanced terahertz spectroscopy serves as a powerful analytical tool for biochemical sensing, materials characterization, and medical diagnostics, where detection sensitivity fundamentally depends on electric field enhancement and confinement. However, the severe scale mismatch between long terahertz wavelengths (on the order of 100 \(\upmu\) m) and nanoscale analytes (typically < 10 nm) imposes critical limitations on conventional far-field techniques. Here, we present a breakthrough sensing approach utilizing twisted double-layer graphene plasmonic metasurfaces (t-DL-GPMs) with nanometric dielectric spacers. Our investigations reveal that these t-DL-GPMs support strongly confined acoustic plasmon nanocavity modes featuring extraordinary field enhancement and deep subwavelength field concentration, along with an extremely small mode volume (10−13λ03). Compared to single-layer and untwisted double-layer graphene configurations, the twisted architecture demonstrates dramatically improved sensing performance, with figures of merit enhanced by factors of 22 and 48, respectively. Most significantly, the platform enables clear identification of terahertz vibrational fingerprints from molecular layers as thin as 1 nm. This work not only opens novel avenues for nanoscale terahertz detection, pushing the THz sensing into unprecedented deep-nano level, but also establishes a versatile foundation for exploring extreme light-matter interactions and developing advanced terahertz photonic devices.
  • loading
  • [1]
    Ferguson B, Zhang X-C. Materials for terahertz science and technology. Nat Mater. 2002;1:26–33.
    [2]
    Niessen KA, Xu M, George DK, et al. Protein and RNA dynamical fingerprinting. Nat Commun. 2019;10(1):1026.
    [3]
    Tonouchi M. Cutting-edge terahertz technology. Nat Photon. 2007;1:97–105.
    [4]
    Jin X, Aglieri V, Jeong YG, et al. Enhanced terahertz spectroscopy of a monolayer transition metal dichalcogenide. Adv Funct Mater. 2025;24:2419841.
    [5]
    Zhang Z, Wang Z, Zhang C, et al. Advanced terahertz refractive sensing and fingerprint recognition through metasurface-excited surface waves. Adv Mater. 2024;36:2308453.
    [6]
    Chen S, Autore M, Li J, et al. Acoustic graphene plasmon nanoresonators for field-enhanced infrared molecular spectroscopy. ACS Photonics. 2017;4:3089–97.
    [7]
    Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349:165–8.
    [8]
    Toma A, Tuccio S, Prato M, et al. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots. Nano Lett. 2014;15:386–91.
    [9]
    Baumberg JJ, Aizpurua J, Mikkelsen MH, et al. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18:668–78.
    [10]
    Xu H, Aizpurua J, Käll M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318–24.
    [11]
    Zhang R, Zhang Y, Dong ZC, et al. Chemical mapping of a single molecule by plasmon-enhanced raman scattering. Nature. 2013;498:82–6.
    [12]
    Chikkaraddy R, de Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535:127–30.
    [13]
    Chen W, Zhang S, Deng Q, et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons. Nat Commun. 2018;9:801.
    [14]
    Li C-Y, Duan S, Wen B-Y, et al. Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat Nanotechnol. 2020;15:922–6.
    [15]
    Li J, Wu D, Li J, et al. Ultrasensitive plasmon-enhanced infrared spectroelectrochemistry. Angew Chem Int Edit. 2024;63:e202319246.
    [16]
    Zhang X, Xu Q, Xia L, et al. Terahertz surface plasmonic waves: a review. Adv Photon. 2020;2:014001.
    [17]
    Aupiais I, Grasset R, Guo T, et al. Ultrasmall and tunable terahertz surface plasmon cavities at the ultimate plasmonic limit. Nat Commun. 2023;14:7645.
    [18]
    Keller J, Scalari G, Cibella S, et al. Few-electron ultrastrong light-matter coupling at 300 GHz with nanogap hybrid LC microcavities. Nano Lett. 2017;17:7410–5.
    [19]
    Chen J, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature. 2012;487:77–81.
    [20]
    Fei Z, Rodin AS, Andreev GO, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature. 2012;487:82–5.
    [21]
    Chen S, Bylinkin A, Wang Z, et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat Commun. 2022;13(1):1374.
    [22]
    Chen S, Leng PL, Konečná A, et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat Mater. 2023;22:860–6.
    [23]
    Alonso-González P, Nikitin AY, Gao Y, et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat Nanotechnol. 2017;12:31–5.
    [24]
    Menabde SG, Heiden JT, Cox JD, et al. Image polaritons in van der Waals crystals. Nanophotonics. 2022;11:2433–52.
    [25]
    Stauber T, Gómez-Santos G. Plasmons in layered structures including graphene. New J Phys. 2012;14:105018.
    [26]
    Principi A, Asgari R, Polini M. Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate. Solid State Commun. 2011;151:1627–30.
    [27]
    Gu X, Lin IT, Liu J-M. Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett. 2013;103:071103.
    [28]
    Lee I-H, Yoo D, Avouris P, et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat Nanotechnol. 2019;14:313–9.
    [29]
    Menabde SG, Lee IH, Lee S, et al. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat Commun. 2021;12:938.
    [30]
    Oh S-H, Altug H, Jin X, et al. Nanophotonic biosensors harnessing van der Waals materials. Nat Commun. 2021;12:3824.
    [31]
    Sunku SS, Ni GX, Jiang BY, et al. Photonic crystals for nano-light in moiré graphene superlattices. Science. 2018;362:1153–6.
    [32]
    Huang T, Tu X, Shen C, et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature. 2022;605:63–8.
    [33]
    Hu F, Das SR, Luan Y, et al. Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys Rev Lett. 2017;119:247402.
    [34]
    Hesp NCH, Torre I, Rodan-Legrain D, et al. Observation of interband collective excitations in twisted bilayer graphene. Nat Phys. 2021;17:1162–8.
    [35]
    Cavicchi L, Torre I, Jarillo-Herrero P, et al. Theory of intrinsic acoustic plasmons in twisted bilayer graphene. Phys Rev B. 2024;110(4):045431.
    [36]
    Zhang H, Fan X, Wang D, et al. Electric field-controlled damping switches of coupled dirac plasmons. Phys Rev Lett. 2022;129:237402.
    [37]
    Zhou C-L, Wu X-H, Zhang Y, et al. Polariton topological transition effects on radiative heat transfer. Phys Rev B. 2021;103:155404.
    [38]
    Liu Z, Zhang Z, Zhou F, et al. Dynamically tunable electro-optic switch and multimode filter based on twisted bilayer graphene strips. J Opt. 2021;23:025104.
    [39]
    Cui W, Wang Y, Xue J, et al. Terahertz sensing based on tunable fano resonance in graphene metamaterial. Results Phys. 2021;31:104994.
    [40]
    Moreno Á, Cavicchi L, Wang X, et al. Twisted bilayer graphene for enantiomeric sensing of chiral molecules. 2024, https://arxiv.org/abs/2409.05178.
    [41]
    Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano. 2012;6:431–40.
    [42]
    Nikitin AY, Alonso-González P, Vélez S, et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat Photon. 2016;10:239–43.
    [43]
    Wu C, Duan Y, Yu L, et al. In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor. Nat Commun. 2024;15:4643.
    [44]
    Chen S, Zhang Y, Shih T-M, et al. Plasmon-induced magnetic resonance enhanced raman spectroscopy. Nano Lett. 2018;18:2209–16.
    [45]
    Lyu J, Huang L, Chen L, et al. Review on the terahertz metasensor: from featureless refractive index sensing to molecular identification. Photonics Res. 2024;12:194–217.
    [46]
    Liu W, Zhou X, Zou S, et al. High-sensitivity polarization-independent terahertz Taichi-like micro-ring sensors based on toroidal dipole resonance for concentration detection of Aβ protein. Nanophotonics. 2023;12:1177–87.
    [47]
    Zhang J, Mu N, Liu L, et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens Bioelectron. 2021;185:113241.
    [48]
    Tao H, Strikwerda AC, Liu M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl Phys Lett. 2010;97:261909.
    [49]
    Liu B, Peng Y, Jin Z, et al. Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC. Chem Eng J. 2023;462:142347.
    [50]
    Lan F, Luo F, Mazumder P, et al. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel. Biomed Opt Express. 2019;10:3789–99.
    [51]
    Amenabar I, Poly S, Nuansing W, et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun. 2013;4:2890.
    [52]
    Röcker C, Pötzl M, Zhang F, et al. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol. 2009;4:577–80.
    [53]
    Liu B, Chen S, Zhang J, et al. A Plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv Mater. 2018;30:e1706031.
    [54]
    Qiu S, Zhang H, Shi Z, et al. Ultrasensitive refractive index sensing based on hybrid high-Q metasurfaces. J Phys Chem C. 2023;127:8263–70.
    [55]
    Zhang S, Bao K, Halas NJ, et al. Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011;11:1657–63.
    [56]
    Verellen N, Van Dorpe P, Huang C, et al. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 2011;11:391–7.
    [57]
    Dolado I, Maciel-Escudero C, Nikulina E, et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat Commun. 2022;13:6850.
    [58]
    Bylinkin A, Schnell M, Autore M, et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat Photonics. 2020;15:197–202.
    [59]
    Le F, Brandl DW, Urzhumov YA, et al. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano. 2008;2:707–18.
    [60]
    Chen W, Zhang S, Kang M, et al. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light Sci Appl. 2018;7:56.
    [61]
    Liu B, Peng Y, Hao Y, et al. Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface. Photonix. 2024;5:10.
    [62]
    Halas NJ, Lal S, Chang W-S, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev. 2011;111:3913–61.
    [63]
    Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev. 2017;117:5110–45.
    [64]
    Wang YH, Zheng S, Yang WM, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature. 2021;600:81–5.
    [65]
    Wen BY, Wang JY, Shen TL, et al. Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution. Light Sci Appl. 2022;11:235.
    [66]
    Damari R, Weinberg O, Krotkov D, et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nat Commun. 2019;10:3248.
    [67]
    Zhang T, Chen S, Petkov PS, et al. Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature. 2025;638:411–7.
    [68]
    Zizlsperger M, Nerreter S, Yuan Q, et al. In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites. Nat Photon. 2024;18:975–81.
    [69]
    Lundeberg MB, Gao Y, Asgari R, et al. Tuning quantum nonlocal effects in graphene plasmonics. Science. 2017;357:187–91.
    [70]
    Zhu W, Esteban R, Borisov AG, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun. 2016;7:11495.
    [71]
    Li P, Wang H, Turup Z, et al. Efficient manipulation of plasmonic modes in single symmetry-breaking Ag nanocube. Appl Surf Sci. 2023;611:155650.
    [72]
    Stefan AM. (Ed.). World Scientific handbook of metamaterials and plasmonics (Vol. 4). Singapore: World Scientific Publishing Co. Pte. Ltd.; 2017.
    [73]
    Giustino F, Umari P, Pasquarello A. Dielectric effect of a thin SiO2 interlayer at the interface between silicon and high-k oxides. Microelectron Eng. 2004;72:299–303.
    [74]
    Huang S, Ming T, Lin Y, et al. Ultrasmall mode volumes in plasmonic cavities of nanoparticle-on-mirror structures. Small. 2016;12:5190–9.
    [75]
    Li X, Smalley JST, Li ZT, Gu Q. Effective modal volume in nanoscale photonic and plasmonic near-infrared resonant cavities. Appl Sci. 2018;8:1646.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (4) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return