| Citation: | Hongbo Zhang, Pengwei Li, Xiaoyu Yang, Wen Wan, Shu Chen, Guangyou Fang, Yiming Zhu, Songlin Zhuang. Twist-engineered acoustic plasmon nanocavities enable deep-nanoscale terahertz molecular fingerprinting[J]. PhotoniX. doi: 10.1186/s43074-025-00194-3 |
| [1] |
Ferguson B, Zhang X-C. Materials for terahertz science and technology. Nat Mater. 2002;1:26–33.
|
| [2] |
Niessen KA, Xu M, George DK, et al. Protein and RNA dynamical fingerprinting. Nat Commun. 2019;10(1):1026.
|
| [3] |
Tonouchi M. Cutting-edge terahertz technology. Nat Photon. 2007;1:97–105.
|
| [4] |
Jin X, Aglieri V, Jeong YG, et al. Enhanced terahertz spectroscopy of a monolayer transition metal dichalcogenide. Adv Funct Mater. 2025;24:2419841.
|
| [5] |
Zhang Z, Wang Z, Zhang C, et al. Advanced terahertz refractive sensing and fingerprint recognition through metasurface-excited surface waves. Adv Mater. 2024;36:2308453.
|
| [6] |
Chen S, Autore M, Li J, et al. Acoustic graphene plasmon nanoresonators for field-enhanced infrared molecular spectroscopy. ACS Photonics. 2017;4:3089–97.
|
| [7] |
Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349:165–8.
|
| [8] |
Toma A, Tuccio S, Prato M, et al. Squeezing terahertz light into nanovolumes: Nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots. Nano Lett. 2014;15:386–91.
|
| [9] |
Baumberg JJ, Aizpurua J, Mikkelsen MH, et al. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater. 2019;18:668–78.
|
| [10] |
Xu H, Aizpurua J, Käll M, et al. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318–24.
|
| [11] |
Zhang R, Zhang Y, Dong ZC, et al. Chemical mapping of a single molecule by plasmon-enhanced raman scattering. Nature. 2013;498:82–6.
|
| [12] |
Chikkaraddy R, de Nijs B, Benz F, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535:127–30.
|
| [13] |
Chen W, Zhang S, Deng Q, et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons. Nat Commun. 2018;9:801.
|
| [14] |
Li C-Y, Duan S, Wen B-Y, et al. Observation of inhomogeneous plasmonic field distribution in a nanocavity. Nat Nanotechnol. 2020;15:922–6.
|
| [15] |
Li J, Wu D, Li J, et al. Ultrasensitive plasmon-enhanced infrared spectroelectrochemistry. Angew Chem Int Edit. 2024;63:e202319246.
|
| [16] |
Zhang X, Xu Q, Xia L, et al. Terahertz surface plasmonic waves: a review. Adv Photon. 2020;2:014001.
|
| [17] |
Aupiais I, Grasset R, Guo T, et al. Ultrasmall and tunable terahertz surface plasmon cavities at the ultimate plasmonic limit. Nat Commun. 2023;14:7645.
|
| [18] |
Keller J, Scalari G, Cibella S, et al. Few-electron ultrastrong light-matter coupling at 300 GHz with nanogap hybrid LC microcavities. Nano Lett. 2017;17:7410–5.
|
| [19] |
Chen J, Badioli M, Alonso-González P, et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature. 2012;487:77–81.
|
| [20] |
Fei Z, Rodin AS, Andreev GO, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature. 2012;487:82–5.
|
| [21] |
Chen S, Bylinkin A, Wang Z, et al. Real-space nanoimaging of THz polaritons in the topological insulator Bi2Se3. Nat Commun. 2022;13(1):1374.
|
| [22] |
Chen S, Leng PL, Konečná A, et al. Real-space observation of ultraconfined in-plane anisotropic acoustic terahertz plasmon polaritons. Nat Mater. 2023;22:860–6.
|
| [23] |
Alonso-González P, Nikitin AY, Gao Y, et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat Nanotechnol. 2017;12:31–5.
|
| [24] |
Menabde SG, Heiden JT, Cox JD, et al. Image polaritons in van der Waals crystals. Nanophotonics. 2022;11:2433–52.
|
| [25] |
Stauber T, Gómez-Santos G. Plasmons in layered structures including graphene. New J Phys. 2012;14:105018.
|
| [26] |
Principi A, Asgari R, Polini M. Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate. Solid State Commun. 2011;151:1627–30.
|
| [27] |
Gu X, Lin IT, Liu J-M. Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures. Appl Phys Lett. 2013;103:071103.
|
| [28] |
Lee I-H, Yoo D, Avouris P, et al. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy. Nat Nanotechnol. 2019;14:313–9.
|
| [29] |
Menabde SG, Lee IH, Lee S, et al. Real-space imaging of acoustic plasmons in large-area graphene grown by chemical vapor deposition. Nat Commun. 2021;12:938.
|
| [30] |
Oh S-H, Altug H, Jin X, et al. Nanophotonic biosensors harnessing van der Waals materials. Nat Commun. 2021;12:3824.
|
| [31] |
Sunku SS, Ni GX, Jiang BY, et al. Photonic crystals for nano-light in moiré graphene superlattices. Science. 2018;362:1153–6.
|
| [32] |
Huang T, Tu X, Shen C, et al. Observation of chiral and slow plasmons in twisted bilayer graphene. Nature. 2022;605:63–8.
|
| [33] |
Hu F, Das SR, Luan Y, et al. Real-space imaging of the tailored plasmons in twisted bilayer graphene. Phys Rev Lett. 2017;119:247402.
|
| [34] |
Hesp NCH, Torre I, Rodan-Legrain D, et al. Observation of interband collective excitations in twisted bilayer graphene. Nat Phys. 2021;17:1162–8.
|
| [35] |
Cavicchi L, Torre I, Jarillo-Herrero P, et al. Theory of intrinsic acoustic plasmons in twisted bilayer graphene. Phys Rev B. 2024;110(4):045431.
|
| [36] |
Zhang H, Fan X, Wang D, et al. Electric field-controlled damping switches of coupled dirac plasmons. Phys Rev Lett. 2022;129:237402.
|
| [37] |
Zhou C-L, Wu X-H, Zhang Y, et al. Polariton topological transition effects on radiative heat transfer. Phys Rev B. 2021;103:155404.
|
| [38] |
Liu Z, Zhang Z, Zhou F, et al. Dynamically tunable electro-optic switch and multimode filter based on twisted bilayer graphene strips. J Opt. 2021;23:025104.
|
| [39] |
Cui W, Wang Y, Xue J, et al. Terahertz sensing based on tunable fano resonance in graphene metamaterial. Results Phys. 2021;31:104994.
|
| [40] |
Moreno Á, Cavicchi L, Wang X, et al. Twisted bilayer graphene for enantiomeric sensing of chiral molecules. 2024, https://arxiv.org/abs/2409.05178.
|
| [41] |
Christensen J, Manjavacas A, Thongrattanasiri S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano. 2012;6:431–40.
|
| [42] |
Nikitin AY, Alonso-González P, Vélez S, et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators. Nat Photon. 2016;10:239–43.
|
| [43] |
Wu C, Duan Y, Yu L, et al. In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor. Nat Commun. 2024;15:4643.
|
| [44] |
Chen S, Zhang Y, Shih T-M, et al. Plasmon-induced magnetic resonance enhanced raman spectroscopy. Nano Lett. 2018;18:2209–16.
|
| [45] |
Lyu J, Huang L, Chen L, et al. Review on the terahertz metasensor: from featureless refractive index sensing to molecular identification. Photonics Res. 2024;12:194–217.
|
| [46] |
Liu W, Zhou X, Zou S, et al. High-sensitivity polarization-independent terahertz Taichi-like micro-ring sensors based on toroidal dipole resonance for concentration detection of Aβ protein. Nanophotonics. 2023;12:1177–87.
|
| [47] |
Zhang J, Mu N, Liu L, et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens Bioelectron. 2021;185:113241.
|
| [48] |
Tao H, Strikwerda AC, Liu M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications. Appl Phys Lett. 2010;97:261909.
|
| [49] |
Liu B, Peng Y, Jin Z, et al. Terahertz ultrasensitive biosensor based on wide-area and intense light-matter interaction supported by QBIC. Chem Eng J. 2023;462:142347.
|
| [50] |
Lan F, Luo F, Mazumder P, et al. Dual-band refractometric terahertz biosensing with intense wave-matter-overlap microfluidic channel. Biomed Opt Express. 2019;10:3789–99.
|
| [51] |
Amenabar I, Poly S, Nuansing W, et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat Commun. 2013;4:2890.
|
| [52] |
Röcker C, Pötzl M, Zhang F, et al. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol. 2009;4:577–80.
|
| [53] |
Liu B, Chen S, Zhang J, et al. A Plasmonic sensor array with ultrahigh figures of merit and resonance linewidths down to 3 nm. Adv Mater. 2018;30:e1706031.
|
| [54] |
Qiu S, Zhang H, Shi Z, et al. Ultrasensitive refractive index sensing based on hybrid high-Q metasurfaces. J Phys Chem C. 2023;127:8263–70.
|
| [55] |
Zhang S, Bao K, Halas NJ, et al. Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011;11:1657–63.
|
| [56] |
Verellen N, Van Dorpe P, Huang C, et al. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 2011;11:391–7.
|
| [57] |
Dolado I, Maciel-Escudero C, Nikulina E, et al. Remote near-field spectroscopy of vibrational strong coupling between organic molecules and phononic nanoresonators. Nat Commun. 2022;13:6850.
|
| [58] |
Bylinkin A, Schnell M, Autore M, et al. Real-space observation of vibrational strong coupling between propagating phonon polaritons and organic molecules. Nat Photonics. 2020;15:197–202.
|
| [59] |
Le F, Brandl DW, Urzhumov YA, et al. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano. 2008;2:707–18.
|
| [60] |
Chen W, Zhang S, Kang M, et al. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light Sci Appl. 2018;7:56.
|
| [61] |
Liu B, Peng Y, Hao Y, et al. Ultra-wideband terahertz fingerprint enhancement sensing and inversion model supported by single-pixel reconfigurable graphene metasurface. Photonix. 2024;5:10.
|
| [62] |
Halas NJ, Lal S, Chang W-S, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev. 2011;111:3913–61.
|
| [63] |
Neubrech F, Huck C, Weber K, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem Rev. 2017;117:5110–45.
|
| [64] |
Wang YH, Zheng S, Yang WM, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature. 2021;600:81–5.
|
| [65] |
Wen BY, Wang JY, Shen TL, et al. Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution. Light Sci Appl. 2022;11:235.
|
| [66] |
Damari R, Weinberg O, Krotkov D, et al. Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies. Nat Commun. 2019;10:3248.
|
| [67] |
Zhang T, Chen S, Petkov PS, et al. Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature. 2025;638:411–7.
|
| [68] |
Zizlsperger M, Nerreter S, Yuan Q, et al. In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites. Nat Photon. 2024;18:975–81.
|
| [69] |
Lundeberg MB, Gao Y, Asgari R, et al. Tuning quantum nonlocal effects in graphene plasmonics. Science. 2017;357:187–91.
|
| [70] |
Zhu W, Esteban R, Borisov AG, et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun. 2016;7:11495.
|
| [71] |
Li P, Wang H, Turup Z, et al. Efficient manipulation of plasmonic modes in single symmetry-breaking Ag nanocube. Appl Surf Sci. 2023;611:155650.
|
| [72] |
Stefan AM. (Ed.). World Scientific handbook of metamaterials and plasmonics (Vol. 4). Singapore: World Scientific Publishing Co. Pte. Ltd.; 2017.
|
| [73] |
Giustino F, Umari P, Pasquarello A. Dielectric effect of a thin SiO2 interlayer at the interface between silicon and high-k oxides. Microelectron Eng. 2004;72:299–303.
|
| [74] |
Huang S, Ming T, Lin Y, et al. Ultrasmall mode volumes in plasmonic cavities of nanoparticle-on-mirror structures. Small. 2016;12:5190–9.
|
| [75] |
Li X, Smalley JST, Li ZT, Gu Q. Effective modal volume in nanoscale photonic and plasmonic near-infrared resonant cavities. Appl Sci. 2018;8:1646.
|