Citation: | Huijie Ma, Kun Huang, Jianan Fang, Ziyu He, Yan Liang, Heping Zeng. Mid-infrared single-pixel imaging via two-photon optical encoding[J]. PhotoniX. doi: 10.1186/s43074-025-00195-2 |
[1] |
Cheng J-X, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350:aaa8870.
|
[2] |
Vodopyanov KL. Laser-based Mid-infrared Sources and Applications. John Wiley & Sons, Inc.; 2020.
|
[3] |
Shi L, Liu X, Shi L, Stinson HT, Rowlette J, Kahl LJ, et al. Mid-infrared metabolic imaging with vibrational probes. Nat Methods. 2020;17:844.
|
[4] |
Israelsen NM, Petersen CR, Barh A, Jain D, Jensen M, Hannesschläger G, et al. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci Appl. 2019;8:114.
|
[5] |
Rogalski A. Recent progress in infrared detector technologies. Infrared Phys Technol. 2011;54:136–54.
|
[6] |
Taylor GG, Walter AB, Korzh B, Bumble B, Patel SR, Allmaras JP, et al. Low-noise single-photon counting superconducting nanowire detectors at infrared wavelengths up to 29 μm. Optica. 2023;10:1672.
|
[7] |
Guo Q, Yu R, Li C, Yuan S, Deng B, García FJ, et al. Efficient electrical detection of mid-infrared graphene plasmons at room temperature. Nat Mater. 2018;17:986–92.
|
[8] |
Bullock J, Amani M, Cho J, Chen Y-Z, Ahn GH, Adinolfi V, et al. Polarization-resolved black phosphorus/molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Nat Photon. 2018;12:601–7.
|
[9] |
Xue X, Chen M, Luo Y, Qin T, Tang X, Hao Q. High-operating-temperature mid-infrared photodetectors via quantum dot gradient homojunction. Light Sci Appl. 2023;12:2.
|
[10] |
Wang P, Xia H, Li Q, Wang F, Zhang L, Li T, et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small. 2019;15:46.
|
[11] |
Hadfield RH. Single-photon detectors for optical quantum information applications. Nat Photon. 2009;3:696–705.
|
[12] |
Barh A, Rodrigo PJ, Meng L, Pedersen C, Tidemand-Lichtenberg P. Parametric upconversion imaging and its applications. Adv Opt Photon. 2019;11:952.
|
[13] |
Kviatkovsky I, Chrzanowski HM, Avery EG, Bartolomaeus H, Ramelow S. Microscopy with undetected photons in the mid-infrared. Sci Adv. 2020;6:eabd0264.
|
[14] |
Paterova AV, Maniam SM, Yang H, Grenci G, Krivitsky LA. Hyperspectral infrared microscopy with visible light. Sci Adv. 2020;6:eabd0460.
|
[15] |
Cai Y, Chen Y, Dorfman K, Xin X, Wang X, Huang K, et al. Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping. Sci Adv. 2024;10:eadl3503.
|
[16] |
Dam JS, Tidemand-Lichtenberg P, Pedersen C. Room-temperature mid-infrared single-photon spectral imaging. Nat Photon. 2012;6:788.
|
[17] |
Huang K, Fang J, Yan M, Wu E, Zeng H. Wide-field mid-infrared single-photon upconversion imaging. Nat Commun. 2022;13:1077.
|
[18] |
Ge Z, Han Z, Liu Y, Wang X, Zhou Z, Yang F, et al. Midinfrared up-conversion imaging under different illumination conditions. Phys Rev Appl. 2023;20(5):054060.
|
[19] |
Rehain P, Sua YM, Zhu S, Dickson I, Muthuswamy B, Ramanathan J, et al. Noise-tolerant single photon sensitive three-dimensional imager. Nat Commun. 2020;11:921.
|
[20] |
Boitier F, Dherbecourt J-B, Godard A, Rosencher E. Infrared quantum counting by nondegenerate two photon conductivity in GaAs. Appl Phys Lett. 2009;94:191104.
|
[21] |
Fang J, Wang Y, Yan M, Wu E, Huang K, Zeng H. Highly sensitive detection of infrared photons by nondegenerate two-photon absorption under midinfrared pumping. Phys Rev Appl. 2020;14:064035.
|
[22] |
Pearl S, Rotenberg N, Driel HM. Three photon absorption in silicon for 2300–3300 nm. Appl Phys Lett. 2008;93:131102.
|
[23] |
Nevet A, Hayat A, Orenstein M. Ultrafast three-photon counting in a photomultiplier tube. Opt Lett. 2011;36:725–7.
|
[24] |
Fishman DA, Cirloganu CM, Webster S, Padilha LA, Monroe M, Hagan DJ, et al. Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nat Photon. 2011;5:561–5.
|
[25] |
Boiko DL, Antonov AV, Kuritsyn DI, Yablonskiy AN, Sergeev SM, Orlova EE, et al. Mid-infrared two photon absorption sensitivity of commercial detectors. Appl Phys Lett. 2017;111(17):171102.
|
[26] |
Piccardo M, Rubin NA, Meadowcroft L, Chevalier P, Yuan H, Kimchi J, et al. Mid-infrared two-photon absorption in an extended-wavelength InGaAs photodetector. Appl Phys Lett. 2018;112:041106.
|
[27] |
Knez D, Hanninen AM, Prince RC, Potma EO, Fishman DA. Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras. Light Sci Appl. 2020;9:125.
|
[28] |
Liu W, Shen D, Zhao G, Yan H, Zhou Z, Wan W. Spatial narrowing of two-photon imaging in a silicon CCD camera. IEEE Phot Technol Lett. 2022;34:459.
|
[29] |
Knez D, Toulson BW, Chen A, Ettenberg MH, Nguyen H, Potma EO, Fishman DA. Spectral imaging at high definition and high speed in the mid-infrared. Sci Adv. 2022;8:eade4247.
|
[30] |
Fang J, Wang Y, Wu E, Yan M, Huang K, Zeng H. Single-photon infrared imaging with a silicon camera based on long-wavelength-pumping two-photon absorption. IEEE J Sel Top Quantum Electron. 2021;28:1–7.
|
[31] |
Pattanaik HS, Reichert M, Hagan DJ, Van Stryland EW. Three-dimensional IR imaging with uncooled GaN photodiodes using nondegenerate two-photon absorption. Opt Express. 2016;24:1196.
|
[32] |
Edgar MP, Gibson GM, Padgett MJ. Principles and prospects for single-pixel imaging. Nat Photon. 2019;13:13–20.
|
[33] |
Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat Commun. 2015;6:6225.
|
[34] |
Kilcullen P, Ozaki T, Liang J. Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns. Nat Commun. 2022;13:7879.
|
[35] |
Meng H, Gao Y, Wang X, Li X, Wang L, Zhao X, et al. Quantum dot-enabled infrared hyperspectral imaging with single-pixel detection. Light Sci Appl. 2024;13:121.
|
[36] |
Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, et al. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag. 2008;25:83–91.
|
[37] |
Bian L, Suo J, Dai Q, Chen F. Experimental comparison of single-pixel imaging algorithms. J Opt Soc Am A Opt Image Sci Vis. 2017;35:78.
|
[38] |
Song K, Bian Y, Wang D, Li R, Wu K, Liu H, et al. Advances and challenges of single-pixel imaging based on deep learning. Laser Photon Rev. 2025;19:2401397.
|
[39] |
Ebner A, Gattinger P, Zorin I, Krainer L, Rankl C, Brandstetter M. Diffraction-limited hyperspectral mid-infrared single-pixel microscopy. Sci Rep. 2023;13:281.
|
[40] |
Zeng B, Huang Z, Singh A, Yao Y, Azad AK, Mohite AD, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci Appl. 2018;7:51.
|
[41] |
Lan G, Tang L, Dong J, Nong J, Luo P, Li X, et al. Enhanced asymmetric light-plasmon coupling in graphene nanoribbons for high-efficiency transmissive infrared modulation. Laser Photon Rev. 2024;18:2300469.
|
[42] |
Stantchev RI, Yu X, Blu T, Pickwell-MacPherson E. Real-time terahertz imaging with a single-pixel detector. Nat Commun. 2020;11:2535.
|
[43] |
Wang Y, Huang K, Fang J, Yan M, Wu E, Zeng H. Mid-infrared single-pixel imaging at the single-photon level. Nat Commun. 2023;14:1073.
|
[44] |
Ziemkiewicz D, Knez D, Garcia EP, Zielińska-Raczyńska S, Czajkowski G, Salandrino A, et al. Two-photon absorption in silicon using the real density matrix approach. J Chem Phys. 2024;161(14):144117.
|
[45] |
Yu T, Fang J, Huang K, Zeng H. Widely tunable mid-infrared fiber-feedback optical parametric oscillator. Photon Res. 2024;12:2123.
|
[46] |
Yu W-K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort. Sensors. 2019;19:4122.
|
[47] |
Li C, Yin W, Jiang H, Zhang Y. An efficient augmented Lagrangian method with applications to total variation minimization. Comput Optim Appl. 2013;56:507–30.
|
[48] |
Zhang K, Li Y, Zuo W, Zhang L, Van Gool L, Timofte R. Plug-and-play image restoration with deep denoiser prior. IEEE Trans Pattern Anal Mach Intell. 2021;44:6360–76.
|
[49] |
Sun MJ, Edgar MP, Gibson GM, Sun B, Radwell N, Lamb R, et al. Single-pixel three-dimensional imaging with time-based depth resolution. Nat Commun. 2016;7:12010.
|
[50] |
Feng Z, Tang T, Wu T, Yu X, Zhang Y, Wang M, et al. Perfecting and extending the near-infrared imaging window. Light Sci Appl. 2021;10:197.
|
[51] |
Liu C, Guo J, Yu L, Li J, Zhang M, Li H, et al. Silicon/2D-material photodetors: from near-infrared to mid-infrared. Light Sci Appl. 2021;10:123.
|