Citation: | Xiaowei Ge, Yifan Zhu, Dingcheng Sun, Hongli Ni, Yueming Li, Chinmayee V. Prabhu Dessai, Ji-Xin Cheng. Fiber laser based stimulated Raman photothermal microscopy towards a high-performance and user-friendly chemical imaging platform[J]. PhotoniX. doi: 10.1186/s43074-025-00196-1 |
[1] |
Cheng J-X, Yuan Y, Ni H, Ao J, Xia Q, Bolarinho R, et al. Advanced vibrational microscopes for life science. Nat Methods. 2025;22:912.
|
[2] |
Cheng J-X, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015. https://doi.org/10.1126/science.aaa8870.
|
[3] |
Gao X, Li X, Min W. Absolute stimulated raman cross sections of molecules. J Phys Chem Lett. 2023. https://doi.org/10.1021/acs.jpclett.3c01064.
|
[4] |
Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, et al. Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science. 2008;322:1857.
|
[5] |
Ji M, et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med. 2015;7:309ra163.
|
[6] |
Oh S, et al. Protein and lipid mass concentration measurement in tissues by stimulated raman scattering microscopy. Proc Natl Acad Sci USA. 2022;119:e2117938119.
|
[7] |
Shen Y, Xu F, Wei L, Hu F, Min W. Live-cell quantitative imaging of proteome degradation by stimulated raman scattering. Angew Chem Int Ed. 2014;53:5596.
|
[8] |
Yue S, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 2014;19:393.
|
[9] |
Shi L, et al. Optical imaging of metabolic dynamics in animals. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-05401-3.
|
[10] |
Zhao G, et al. Ovarian cancer cell fate regulation by the dynamics between saturated and unsaturated fatty acids. Proc Natl Acad Sci U S A. 2022;119:e2203480119.
|
[11] |
Li Y, et al. Microglial lipid droplet accumulation in tauopathy brain is regulated by neuronal AMPK. Cell Metabolism. 2024;36:1351.
|
[12] |
Hong W, Karanja CW, Abutaleb NS, Younis W, Zhang X, Seleem MN, et al. Antibiotic susceptibility determination within one cell cycle at single-bacterium level by stimulated raman metabolic imaging. Anal Chem. 2018;90:3737.
|
[13] |
Zhang M, Hong W, Abutaleb NS, Li J, Dong P-T, Zong C, et al. Rapid determination of antimicrobial susceptibility by stimulated raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv Sci. 2020;7:2001452.
|
[14] |
Ge X, Pereira FC, Mitteregger M, Berry D, Zhang M, Hausmann B, et al. SRS-FISH: a high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc Natl Acad Sci U S A. 2022;119:e2203519119.
|
[15] |
Pereira FC, et al. The Parkinson’s drug entacapone disrupts gut microbiome homeostasis via iron sequestration, bioRxiv. 2023;11;12–566429.
|
[16] |
Wei L, Chen Z, Shi L, Long R, Anzalone AV, Zhang L, et al. Super-multiplex vibrational imaging. Nature. 2017;544:465.
|
[17] |
Shi L, Wei M, Miao Y, Qian N, Shi L, Singer RA, Benninger RKP, Min W. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat Biotechnol. 2022;40:364.
|
[18] |
Prince RC, Frontiera RR, Potma EO. Stimulated raman scattering: from bulk to nano. Chem Rev. 2017;117:5070.
|
[19] |
Xu C, Wise FW. Recent advances in fibre lasers for nonlinear microscopy. Nat Photon. 2013;7:875.
|
[20] |
Freudiger CW, Yang W, Holtom GR, Peyghambarian N, Xie XS, Kieu KQ. Stimulated raman scattering microscopy with a robust fibre laser source. Nat Photon. 2014. https://doi.org/10.1038/nphoton.2013.360.
|
[21] |
Nose K, Ozeki Y, Kishi T, Sumimura K, Nishizawa N, Fukui K, et al. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique. Opt Express. 2012;20:13958.
|
[22] |
Ni H, Lin P, Zhu Y, Zhang M, Tan Y, Zhan Y, et al. Multiwindow SRS imaging using a rapid widely tunable fiber laser. Anal Chem. 2021;93:15703.
|
[23] |
de Andrade RB, Kerdoncuff H, Berg-Sørensen K, Gehring T, Lassen M, Andersen UL. Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy. Optica, OPTICA. 2020;7:470.
|
[24] |
Casacio CA, Madsen LS, Terrasson A, Waleed M, Barnscheidt K, Hage B, et al. Quantum-enhanced nonlinear microscopy. Nature. 2021. https://doi.org/10.1038/s41586-021-03528-w.
|
[25] |
Xu Z, Oguchi K, Taguchi Y, Takahashi S, Sano Y, Mizuguchi T, et al. Quantum-enhanced stimulated Raman scattering microscopy in a high-power regime. Opt Lett. 2022;47:5829.
|
[26] |
Bertoncini A, Laptenok SP, Genchi L, Rajamanickam VP, Liberale C. 3D-printed high-NA catadioptric thin lens for suppression of XPM background in stimulated Raman scattering microscopy. J Biophotonics. 2021;14:e202000219.
|
[27] |
Tsikritsis D, Legge EJ, Belsey NA. Practical considerations for quantitative and reproducible measurements with stimulated Raman scattering microscopy. Analyst. 2022;147:4642.
|
[28] |
Zhang J, Lin H, Xu J, Zhang M, Ge X, Zhang C, Huang WE, Cheng JX. High-throughput single-cell sorting by stimulated Raman-activated cell ejection, bioRxiv. 2023;10:16–562526.
|
[29] |
Suzuki Y, et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc Natl Acad Sci U S A. 2019;116:15842.
|
[30] |
Yu Y, Mutlu AS, Liu H, Wang MC. High-throughput screens using photo-highlighting discover BMP signaling in mitochondrial lipid oxidation. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-00944-3.
|
[31] |
Zhu Y, et al. Stimulated raman photothermal microscopy toward ultrasensitive chemical imaging. Sci Adv. 2023;9:eadi2181.
|
[32] |
Gaiduk A, Yorulmaz M, Ruijgrok PV, Orrit M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science. 2010;330:353.
|
[33] |
Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M. Detection limits in photothermal microscopy. Chem Sci. 2010;1:343.
|
[34] |
Wei M, Shi L, Shen Y, Zhao Z, Guzman A, Kaufman LJ, et al. Volumetric chemical imaging by clearing-enhanced stimulated raman scattering microscopy. Proc Natl Acad Sci U S A. 2019;116:6608.
|
[35] |
Ueda HR, Ertürk A, Chung K, Gradinaru V, Chédotal A, Tomancak P, et al. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci. 2020;21:61.
|
[36] |
Brinkmann M, et al. Portable all-fiber dual-output widely tunable light source for coherent raman imaging. Biomed Opt Express. 2019;10:4437.
|
[37] |
Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. Photothermal microscopy: imaging the optical absorption of single nanoparticles and single molecules. ACS Nano. 2020;14:16414.
|
[38] |
Thorn K. A quick guide to light microscopy in cell biology. MBoC. 2016;27:219.
|
[39] |
Zhang Y, Gross H. Systematic design of microscope objectives. Part I: System review and analysis. Adv Opt Technol. 2019;8:313.
|
[40] |
Lin H, et al. Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-23202-z.
|
[41] |
Zhang C, Li J, Lan L, Cheng J-X. Quantification of lipid metabolism in living cells through the dynamics of lipid droplets measured by stimulated raman scattering imaging. Anal Chem. 2017;89:4502.
|
[42] |
Chen T, Yavuz A, Wang MC. Dissecting lipid droplet biology with coherent Raman scattering microscopy. J Cell Sci. 2021;135:jcs252353.
|
[43] |
Shou J, Ozeki Y. Dual-polarization hyperspectral stimulated raman scattering microscopy. Appl Phys Lett. 2018;113:033701.
|
[44] |
Tuck M, et al. Multimodal imaging based on vibrational spectroscopies and mass spectrometry imaging applied to biological tissue: a multiscale and multiomics review. Anal Chem. 2021;93:445.
|
[45] |
Vanna R, De la Cadena A, Talone B, Manzoni C, Marangoni M, Polli D, et al. Vibrational imaging for label-free cancer diagnosis and classification. Riv Nuovo Cim. 2022;45:107.
|
[46] |
Shen Y, Hu F, Min W. Raman imaging of small biomolecules. Annu Rev Biophys. 2019;48:347.
|
[47] |
Zhang W, et al. Multi-molecular hyperspectral PRM-SRS microscopy. Nat Commun. 2024;15:1599.
|
[48] |
Durst ME, Mertz J. Multiphoton Photothermal Imaging in Scattering Samples, in Optics in the Life Sciences (OSA, Monterey, California, 2011), p. NMD6.
|
[49] |
Wang L, Lin H, Zhu Y, Ge X, Li M, Liu J, et al. Overtone photothermal microscopy for high-resolution and high-sensitivity vibrational imaging. Nat Commun. 2024;15:5374.
|
[50] |
Ni H, Yuan Y, Li M, Zhu Y, Ge X, Yin J, et al. Millimetre-deep micrometre-resolution vibrational imaging by shortwave infrared photothermal microscopy. Nat Photon. 2024;18:944.
|
[51] |
Zhang D, Slipchenko MN, Leaird DE, Weiner AM, Cheng J-X. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Opt Express. 2013;21:13864.
|