Turn off MathJax
Article Contents
Shiwei Deng, Xunda Chang, Jiayu Wang, Yifan Wang, Xin Xu, Kewu Li, Yidong Tan, Guangwei Hu. Highly sensitive self-calibrating birefringence measurement based on anisotropic laser feedback polarization effect[J]. PhotoniX. doi: 10.1186/s43074-025-00208-0
Citation: Shiwei Deng, Xunda Chang, Jiayu Wang, Yifan Wang, Xin Xu, Kewu Li, Yidong Tan, Guangwei Hu. Highly sensitive self-calibrating birefringence measurement based on anisotropic laser feedback polarization effect[J]. PhotoniX. doi: 10.1186/s43074-025-00208-0

Highly sensitive self-calibrating birefringence measurement based on anisotropic laser feedback polarization effect

doi: 10.1186/s43074-025-00208-0
Funds:  National Natural Science Foundation of China (62405292); Fundamental Research Program of Shanxi Province (202403021222184); Postdoctoral Fellowship Program of CPSF (GZC20240802).
  • Received Date: 2025-05-26
  • Accepted Date: 2025-11-05
  • Rev Recd Date: 2025-10-17
  • Available Online: 2025-11-14
  • Accurate measurements of dual parameters of phase retardance and retardance axis of birefringent materials are of fundamental importance to their fabrication and applications. However, current techniques typically exhibit limited versatility, suffering from high complexity, insufficient accuracy, and low efficiency. In this study, we propose and demonstrate the anisotropic laser feedback polarization effect for birefringent measurement, featuring simultaneous dual-parameter demodulation, unified polarization modulation-analysis architecture, high detection sensitivity, user-friendly operation, and versatile functionality. Importantly, such system can be self-calibrated with its own physical phenomena to reduce the installation derivation. To showcase the powerful effectiveness, we perform the static birefringence, dynamic birefringence variation, and spatial birefringence distribution, which remarkably exhibits the standard deviation of 0.0453° and 0.0939° for phase retardance and retardance axis azimuth, with the limit allowable sample transmittance around 10–5. This work demonstrates comprehensive applicability across diverse birefringence scenarios, extending the application of anisotropic laser feedback polarization effect, while establishing a novel strategy for birefringence measurement.
  • loading
  • [1]
    Wang Y, Xia M, Zhou J, Huang D, Chen Y, Zhang X. Resonantly enhanced optical birefringence in ultrathin high-index WS2 metasurfaces. Laser Photon Rev. 2024;18:2301088.
    [2]
    Zhou Y, Guo Z, Gu H, Li Y, Song Y, Liu S, et al. A solution-processable natural crystal with giant optical anisotropy for efficient manipulation of light polarization. Nat Photon. 2024;18:922.
    [3]
    Zhang F, Chen X, Zhang M, Jin W, Han S, Yang Z, et al. An excellent deep-ultraviolet birefringent material based on [BO2]∞ infinite chains. Light Sci Appl. 2022;11:252.
    [4]
    Kebci Z, Hamidi M, Zeghdoudi T, Belkhir A, Lamrous O, Baida FI. Design of a metallic half-wave plate based on birefringent metamaterial for applications in the visible range. Phys Scr. 2025;100:035552.
    [5]
    Li Z, Liu W, Zhang Y, Cheng H, Zhang S, Chen S. Optical polarization manipulations with anisotropic nanostructures. PhotoniX. 2024;5:30.
    [6]
    Crotti G, Akturk M, Schirato A, Vinel V, Trifonov AA, Buchvarov IC, et al. Giant ultrafast dichroism and birefringence with active nonlocal metasurfaces. Light Sci Appl. 2024;13:204.
    [7]
    Shimura T, Kinoshita T, Koto Y, Umeda N, Iwami K. Birefringent reconfigurable metasurface at visible wavelengths by MEMS nanograting. Appl Phys Lett. 2018;113:171905.
    [8]
    Hsu S-Y, Lee K-L, Lin E-H, Lee M-C, Wei P-K. Giant birefringence induced by plasmonic nanoslit arrays. Appl Phys Lett. 2009;95:013105.
    [9]
    Wu W, Battie Y, Lemaire V, Decher G, Pauly M. Structure-dependent chiroptical properties of twisted multilayered silver nanowire assemblies. Nano Lett. 2021;21:8298–303.
    [10]
    Kilic U, Hilfiker M, Wimer S, Ruder A, Schubert E, Schubert M, et al. Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials. Nat Commun. 2024;15:3757.
    [11]
    Kilic U, Traouli Y, Hilfiker M, Bryant K, Schoeche S, Feder R, et al. Nanocolumnar metamaterial platforms: scaling rules for structural parameters revealed from optical anisotropy. Adv Opt Mater. 2024;12:2302767.
    [12]
    Mireles M, Hoffman BN, MacNally S, Smith CC, Lakshmanan SN, Lambropoulos JC, et al. Direct-write laser-assisted patterning of form birefringence in wave plates fabricated by glancing-angle deposition. Optica. 2023;10:657–62.
    [13]
    Schulz M, Zablocki J, Abdullaeva OS, Brück S, Balzer F, Lützen A, et al. Giant intrinsic circular dichroism of prolinol-derived squaraine thin films. Nat Commun. 2018;9:2413.
    [14]
    Sit A, Di Colandrea F, D’Errico A, Karimi E. Spatially twisted liquid-crystal devices. APL Photon. 2024;9:056112.
    [15]
    Abu Aisheh M, Abutoama M, Abuleil MJ, Abdulhalim I. Fast tunable metamaterial liquid crystal achromatic waveplate. Nanophotonics. 2023;12:1115–27.
    [16]
    Huang X, Yang H, Wei Y, Ju H, Wang W, Tu D, Li G. Dynamic and Static Stress Sensing Based on Mechanical Quenching Phenomenon From CaZnOS: Cu+ Laser & Photonics Reviews. 2025;19:2402010.
    [17]
    Tabatabaeian A, Ghasemi AR, Shokrieh MM, Marzbanrad B, Baraheni M, Fotouhi M. Residual stress in engineering materials: a review. Adv Eng Mater. 2022;24:2100786.
    [18]
    Kang C, Park C, Lee M, Kang J, Jang MS, Chung H. Large-scale photonic inverse design: computational challenges and breakthroughs. Nanophotonics. 2024;13:3765–92.
    [19]
    Leica, Polarizing microscope, www.leica-microsystems.com.cn/cn/science-lab/industrial/the-polarization-microscopy-principle/, accessed: April, 2025.
    [20]
    Tian Y, Zhang J, Peng G-D, Chu Y, Luo Y, Khan MTA, et al. Birefringence measurement by expandable polarization interference method. J Lightwave Technol. 2020;38:834.
    [21]
    Li K, Zhang R, Jing N, Chen Y, Zhang M, Wang L, et al. Fast and full range measurements of ellipsometric parameters using a 45° dual-drive symmetric photoelastic modulator. Opt Express. 2017;25:5725.
    [22]
    Chen Q, Liu B, He Y, Luo H, Lv W. Phase retardation measurement of an arbitrary wave plate based on magneto-optical modulating and residue detecting of the base frequency component of the signal. Opt Lett. 2018;43:4514.
    [23]
    Lee SY, Lin JF, Lo YL. Measurements of phase retardation and principal axis angle using an electro-optic modulated Mach-Zehnder interferometer. Opt Lasers Eng. 2005;43:704.
    [24]
    Wei S, Pang YJ, Bai ZX, Wang YL, Lv ZW. Laser heterodyne based stress measurement technology for optical elements. Infrared Phys Technol. 2021;119:103969.
    [25]
    Fujiwara H. Spectroscopic ellipsometry: principles and applications. England: Wiley; 2007. p. 70–78.
    [26]
    Hu J, Li RF, Hu ZJ, Li HS, Yang YZ, Li HT, et al. Implementation of Er-doped random fiber laser self-mixing sensor with ultra-limit sensitivity. APL Photonics. 2024;9:3.
    [27]
    Li J, Zhao YK, Liu J, Liu JC, Li HT, Yu Q, et al. Toward exploring noncontinuous-state dynamics based on pulse-modulated frequency-shifted laser feedback interferometry. Photonics Res. 2025;13:671.
    [28]
    Taimre T, Nikolic M, Bertling K, Lim YL, Bosch T, Rakic AD. Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Adv Opt Photon. 2015;7:570.
    [29]
    Li RF, Hu ZJ, Li HT, Zhao YK, Liu KY, Tu YR, et al. All-fiber laser-self-mixing interferometer with adjustable injection intensity for remote sensing of 40 km. J Lightwave Technol. 2022;40:4863.
    [30]
    Xu X, Dai ZR, Wang YF, Li MF, Tan YD. High sensitivity and full-circle optical rotary sensor for non-cooperatively tracing wrist tremor with nanoradian resolution. IEEE Trans Ind Electron. 2022;69:9605.
    [31]
    Zhu KY, Guo B, Lu YY, Zhang SL, Tan YD. Single-spot two-dimensional displacement measurement based on self-mixing interferometry. Optica. 2017;4:729.
    [32]
    Lin F, Tan YF, Ali M, Su Z, Liao WH, Wong HY. Investigating the influence of target distance in laser offline measurement based on self-mixing interference and its potential for monitoring additive manufacturing processes. J Manuf Process. 2025;137:32.
    [33]
    Bittner S, Sciamanna M. Complex nonlinear dynamics of polarization and transverse modes in a broad-area VCSEL. APL Photonics. 2022;7:12.
    [34]
    Pusch T, La Tona E, Lindemann M, Gerhardt NC, Hofmann MR, Michalzik R. Monolithic vertical-cavity surface-emitting laser with thermally tunable birefringence. Appl Phys Lett. 2017;110:15.
    [35]
    Deng S, Zhang Z, Shen H, Shi Y, Liu W. Frequency-shifted dynamics of Nd: YVO4 laser with anisotropic and quite weak optical feedback. Results Phys. 2022;43:106104.
    [36]
    Schubert M. Generalized ellipsometry and complex optical systems. Thin Solid Films. 1998;313:323–32.
    [37]
    Qian K, Yang H, Li J, Liang D, Li J, Zhong Y, et al. Extreme anti-interference capability in temporal and frequency domain by utilizing laser antenna in optical wireless communication system. PhotoniX. 2025;6:22.
    [38]
    Deng S, Shen H. Influence of acousto-optic frequency shifter’s thermal-induced birefringence on laser frequency-shifted feedback system. Opt Lasers Eng. 2023;160:107290.
    [39]
    Dong X, Guo F, Chen L, Mu W, Liu L, Wang S, et al. Crystal structural editing: novel biaxial MgTe2O5 crystal as zero-order waveplates. Adv Mater. 2025;37:2419643.
    [40]
    Kragt AJJ, van Gessel IPM, Schenning APHJ, Broer DJ. Temperature-Responsive Polymer Wave Plates as Tunable Polarization Converters Advanced. Opt Mater. 2019;7:1901103.
    [41]
    Peltier J, Zhang WW, Virot L, Lafforgue C, Deniel L, Marris-morini D, et al. High-speed silicon photonic electro-optic Kerr modulation. Photonics Res. 2024;12:51.
    [42]
    Li J, Niu Y, Niu H. Measurement of phase retardation of optical multilayer films based on laser feedback system. Opt Express. 2016;24:409.
    [43]
    Thorlabs, liquid crystal variable retarders, www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6339, accessed: April, 2025.
    [44]
    Ji J, Chen C, Sun J, Ye X, Wang Z, Li J, et al. High-dimensional Poincaré beams generated through cascaded metasurfaces for high-security optical encryption. PhotoniX. 2024;5:13.
    [45]
    Hu G, Ma W, Hu D, Wu J, Zheng C, Liu K, et al. Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal. Nat Nanotechnol. 2023;18:64.
    [46]
    Hu G, Ou Q, Si G, Wu Y, Wu J, Dai Z, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature. 2020;582:209.

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (18) PDF downloads(0) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return