| Citation: | Chang Liu, Yuzheng Wang, Yixun Fan, Liangliang Liang. Photon avalanche nanomaterials: from spark to surge[J]. PhotoniX. doi: 10.1186/s43074-025-00209-z |
| [1] |
Szalkowski M, et al. Advances in the photon avalanche luminescence of inorganic lanthanide-doped nanomaterials. Chem Soc Rev. 2025;54:983–1026.
|
| [2] |
Skripka A, Chan EM. Unraveling the myths and mysteries of photon avalanching nanoparticles. Mater Horiz. 2025;12:3575–97.
|
| [3] |
Joubert MF, Guy S, Jacquier B. Model of the photon-avalanche effect. Phys Rev B. 1993;48:10031–7.
|
| [4] |
Guy S, Joubert MF, Jacquier B. Photon avalanche and the mean-field approximation. Phys Rev B. 1997;55:8240–8.
|
| [5] |
Chivian JS, Case WE, Eden DD. The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl Phys Lett. 1979;35:124–5.
|
| [6] |
Lee C, et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature. 2021;589:230–5.
|
| [7] |
Chen J, et al. Optical nonlinearities in excess of 500 through sublattice reconstruction. Nature. 2025;643:669–74.
|
| [8] |
Zhang Z, et al. Tuning phonon energies in lanthanide-doped potassium lead halide nanocrystals for enhanced nonlinearity and upconversion. Angew Chem Int Ed Engl. 2023;62:e202212549.
|
| [9] |
Bednarkiewicz A, Chan EM, Kotulska A, Marciniak L, Prorok K. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 2019;4:881–9.
|
| [10] |
Liang Y, et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat Nanotechnol. 2022;17:524–30.
|
| [11] |
Lee C, et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature. 2023;618:951–8.
|
| [12] |
Fardian-Melamed N, et al. Infrared nanosensors of piconewton to micronewton forces. Nature. 2025;637:70–5.
|
| [13] |
Casar JR, et al. Upconverting microgauges reveal intraluminal force dynamics in vivo. Nature. 2025;637:76–83.
|
| [14] |
Szalkowski M, et al. Predicting the impact of temperature dependent multi-phonon relaxation processes on the photon avalanche behavior in Tm3+: NaYF4 nanoparticles. Optical Materials: X. 2021;12:100102.
|
| [15] |
Bednarkiewicz A, Chan EM, Prorok K. Enhancing FRET biosensing beyond 10 nm with photon avalanche nanoparticles. Nanoscale Adv. 2020;2:4863–72.
|
| [16] |
Bednarkiewicz A, et al. All-optical data processing with photon-avalanching nanocrystalline photonic synapse. Adv Mater. 2023;35:2304390.
|
| [17] |
Skripka A, et al. Intrinsic optical bistability of photon avalanching nanocrystals. Nat Photon. 2025;19:212–8.
|
| [18] |
Skripka A, et al. A generalized approach to photon avalanche upconversion in luminescent nanocrystals. Nano Lett. 2023;23:7100–6.
|
| [19] |
Dong H, et al. Parallel photon avalanche nanoparticles for tunable emission and multicolour sub-diffraction microscopy. Nat Photon. 2025;19:692–700.
|