| Citation: | Haoliang Cheng, Shuangqiang Fang, Yi Li, Qiangqiang Zhu, Yixi Zhuang, Rongjun Xie, Wei Yan, Ding Zhao, Min Qiu, Le Wang. Mechano-electro-optical conversion dynamics in mechanoluminescence and its application in remote human–robot interaction[J]. PhotoniX. doi: 10.1186/s43074-025-00210-6 |
| [1] |
Guo LC, Xia P, Wang T, Yakovlev AN, Hu TT, Zhao F, et al. Visual representation of the stress distribution with a color-manipulated mechanoluminescence of fluoride for structural mechanics. Adv Funct Mater. 2023;33:2306875.
|
| [2] |
Yang Y, Zheng SH, Fu XY, Zhang HW. Remote and portable mechanoluminescence sensing system based on a SrAl2O4: Eu, Dy film and its potential application to monitoring the safety of gas pipelines. Optik. 2018;158:602.
|
| [3] |
Kim JS, Kwon YN, Sohn KS. Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu, Dy, Nd). Acta Mater. 2003;51:6437.
|
| [4] |
Liu H, Zheng Y, Liu S, Zhao J, Song Z, Peng D, et al. Realizing red mechanoluminescence of ZnS: Mn2+ through ferromagnetic coupling. Adv Funct Mater. 2024;34:2314422.
|
| [5] |
Shin HG, Timilsina S, Sohn KS, Kim JS. Digital image correlation compatible mechanoluminescent skin for structural health monitoring. Adv Sci. 2022;9:2105889.
|
| [6] |
Li YX, Shi LJ, Cheng Y, Wang RR, Sun J. Development of conductive materials and conductive networks for flexible force sensors. Chem Eng J. 2023;455:140763.
|
| [7] |
Jeong SM, Song Sk, Joo K-I, Kim J, Hwang S, Jeong J, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer. Energy Environ Sci. 2014;7:3338.
|
| [8] |
Wang XD, Que ML, Chen MX, Han X, Li XY, Pan CF, et al. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing. Adv Mater. 2017;29:1605817.
|
| [9] |
Wang CF, Ma RH, Peng DF, Liu XH, Li J, Jin BR, et al. Mechanoluminescent hybrids from a natural resource for energy-related applications. InfoMat. 2021;3:1272.
|
| [10] |
Qian X, Cai ZR, Su M, Li FY, Fang W, Li YD, et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification. Adv Mater. 2018;30:1800291.
|
| [11] |
Zhuang YX, Li XY, Lin FY, Chen CJ, Wu ZS, Luo HD, et al. Visualizing dynamic mechanical actions with high sensitivity and high resolution by near-distance mechanoluminescence imaging. Adv Mater. 2022;34:2202864.
|
| [12] |
Lee G, Song S, Jeong WH, Lee C, Kim JS, Lee JH, et al. Interfacial triboelectricity lights up phosphor-polymer elastic composites: unraveling the mechanism of mechanoluminescence in zinc sulfide microparticle-embedded polydimethylsiloxane films. Small. 2024;20:2307089.
|
| [13] |
Peng DF, Jiang Y, Huang BL, Du YY, Zhao JX, Zhang X, et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset. Adv Mater. 2020;32:1907747.
|
| [14] |
Jia JN, Fu L, Gao XW, Dong ST, Xu YQ, Wang DY, et al. Ternary-host and heterojunction enabled eye-visible elastic mechanoluminescence from (Ca0.5Sr0.5) ZnOS/xZnS/Mn2+. J Phys Chem C. 2022;126:1523.
|
| [15] |
Pan X, Zhuang YX, He W, Lin CJ, Mei LF, Chen CJ, et al. Quantifying the interfacial triboelectricity in inorganic-organic composite mechanoluminescent materials. Nat Commun. 2024;15:2673.
|
| [16] |
Chang SL, Zhang KY, Peng DN, Deng Y, Shan CX, Dong L. Mechanoluminescent functional devices: developments, applications and prospects. Nano Energy. 2024;122:109325.
|
| [17] |
Wang FL, Wang FL, Wang XD, Wang SC, Jiang JF, Liu QL, et al. Mechanoluminescence enhancement of ZnS:Cu,Mn with piezotronic effect induced trap-depth reduction originated from PVDF ferroelectric film. Nano Energy. 2019;63:103861.
|
| [18] |
Hou B, Yi LY, Li C, Zhao H, Zhang R, Zhou B, et al. An interactive mouthguard based on mechanoluminescence-powered optical fibre sensors for bite-controlled device operation. Nat Electron. 2022;5:682.
|
| [19] |
Yang H, Wei Y, Ju HN, Huang XR, Li J, Wang W, et al. Microstrain-stimulated elastico-mechanoluminescence with dual-mode stress sensing. Adv Mater. 2024;36:2401296.
|
| [20] |
Deng Y, Peng DN, Shen CL, Sun JL, Zheng GS, Chang SL, et al. Energy transfer-assisted color conversion of persistent mechanoluminescence in RhB@ SiO2/SrAl2O4: Eu, Dy system for multilevel information encryption. Laser Photon Rev. 2024;18:2400251.
|
| [21] |
Li W, Cai YY, Chang JQ, Wang SS, Liu JJ, Zhou L, et al. Unraveling mechanoluminescent mechanisms in doped CaZnOS materials: co-mediation of trap-controlled and non-trap-controlled processes. Adv Funct Mater. 2023;33:2305482.
|
| [22] |
Tang YQ, Cai YY, Dou KP, Chang JQ, Li W, Wang SS, et al. Dynamic multicolor emissions of multimodal phosphors by Mn2+ trace doping in self-activated CaGa4O7. Nat Commun. 2024;15:3209.
|
| [23] |
Cai YY, Liu SB, Zhao L, Wang C, Lv HY, Liu BT, et al. Delayed stress memory by CaAl2O4:Eu2+ mechanoluminescent phosphor with defect engineering regulation. J Adv Ceram. 2022;11:1319.
|
| [24] |
Jeong HI, Jung HS, Dubajic M, Kim G, Jeong WH, Song H, et al. Super elastic and negative triboelectric polymer matrix for high performance mechanoluminescent platforms. Nat Commun. 2025;16:854.
|
| [25] |
Huang Z, Chen B, Ren B, Tu D, Wang Z, Wang C, et al. Smart mechanoluminescent phosphors: a review of strontium-aluminate-based materials, properties, and their advanced application technologies. Adv Sci. 2023;10:2204925.
|
| [26] |
Yang M, Ge X, Zheng LY, Huang YS, Zhong JP, Tu D, et al. Mechanoluminescent light sources based on nanostructured systems for biomedical applications: a review. ACS Appl Nano Mater. 2024;7:26515.
|
| [27] |
Huang Z, Li X, Liang T, Ren B, Zhang X, Zheng Y, et al. Smart mechanoluminescent phosphors: a review of zinc sulfide-based materials for advanced mechano-optical applications. Responsive Materials. 2024;2:e20240019.
|
| [28] |
Feng A, Smet PF. A review of mechanoluminescence in inorganic solids: compounds, mechanisms, models and applications. Materials. 2018;11:484.
|
| [29] |
Li L, Wong K-L, Li PF, Peng MY. Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor. J Mater Chem C. 2016;4:8166.
|
| [30] |
Bai YQ, Wang F, Zhang LQ, Wang DA, Liang YM, Yang SR, et al. Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds. Nano Energy. 2022;96:107075.
|
| [31] |
Zhou JY, Gu Y, Lu JY, Xu LD, Zhang JC, Wang D, et al. An ultra-strong non-pre-irradiation and self-recoverable mechanoluminescent elastomer. Chem Eng J. 2020;390:124473.
|
| [32] |
Runowski M, Moszczyński J, Woźny P, Soler-Carracedo K, Barzowska J, Mahlik S, et al. Sound, force and light induced emissions from Er3+-Mn2+ doped ZnS/CaZnOS heterostructure for remote temperature monitoring via photo-and mechanoluminescence. Adv Mater. 2025. https://doi.org/10.1002/adma.202510117.
|
| [33] |
Zhang P, Zhao XH, Jia ZW, Dong JB, Liang TL, Liu Y, et al. High defect tolerance breaking the design limitation of full-spectrum multimodal luminescence materials. Adv Mater. 2024;37:2411532.
|
| [34] |
Wang TL, Zhang PF, Xiao JQ, Guo ZY, Xie XW, Huang JH, et al. Trap assisted dynamic mechanoluminescence toward self-referencing and visualized strain sensing. Adv Sci. 2024;12(3):2410673.
|
| [35] |
Zhang JC, Wang XS, Marriott G, Xu CN. Trap-controlled mechanoluminescent materials. Prog Mater Sci. 2019;103:678.
|
| [36] |
He QS, Yan YJ, Wang T, Guo LC, Yue Y, Zhu NN, et al. Color-resolved mechanoluminescence of Eu and Mn co-doped SrMg2(PO4)2. CrystEngComm. 2024;26:2096.
|
| [37] |
Qiu XY, Liu JZ, Zhou B, Zhang XX. Bioinspired bimodal mechanosensors with real-time, visualized information display for intelligent control. Adv Funct Mater. 2023;33:2300321.
|
| [38] |
Li WH, Wang SK, Jin MY, Wang L, Nan JL, Wang C, et al. Near‐infrared dual‐modal sensing of force and temperature in total knee replacement using mechanoluminescent phosphor of Sr3Sn2O7: Nd, Yb. Small. 2024;20:2310180.
|
| [39] |
Wu LM, Yuan XX, Tang YX, Wageh S, Al-Hartomy OAA, Al-Sehemi AGG, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices. Photonix. 2023;4:15.
|
| [40] |
Shao LY, Zhang JM, Chen XW, Xu DY, Gu HX, Mu Q, et al. Artificial intelligence-driven distributed acoustic sensing technology and engineering application. Photonix. 2025;6:4.
|
| [41] |
Ou JQ, Fang SQ, Cheng HL, Han DJ, Zhu QQ, Zhai Y, et al. Awakening dumb Mn2+ mechanoluminescence site to achieve force, temperature and time-domain induced color tuning via trap-assisted energy transfer. Chem Eng J. 2024;493:152500.
|
| [42] |
Qin SY, Wei WY, Tian BR, Ma ZD, Fang SF, Wang YS, et al. Self-recoverable, highly repeatable, and thermally stable mechanoluminescence for dual-mode information storage and photonic skin applications. Adv Funct Mater. 2024;34:2401535.
|
| [43] |
Li LY, Sheng SF, Liu YF, Wen JP, Song CY, Chen ZP, et al. Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch. Photonix. 2023;4:21.
|
| [44] |
Rastogi CK, Mishra R, Chirauri S, Rao KR, Vatsa R, Kadam R, et al. Comparative study on photo and electroluminescence properties of Cu-doped ZnS. Phys B Condens Matter. 2022;640:414054.
|
| [45] |
Sohn K-S, Timilsina S, Singh SP, Choi T, Kim JS. Mechanically driven luminescence in a ZnS: Cu-PDMS composite. APL Mater. 2016;4:106102.
|
| [46] |
Wang H, Zhao TT, Li M, Li JL, Liu K, Peng S, et al. Oscillatory mechanoluminescence of Mn2+-doped SrZnOS in dynamic response to rapid compression. Nat Commun. 2025;16:548.
|
| [47] |
Haider SS, Baran M, Diduszko R, Pojnar K, Wolska A, Klepka MT, et al. Visible to near-infrared mechanoluminescence from Pr-doped LiTaO3 for stress-sensing applications. J Phys Chem C. 2023;128:489.
|
| [48] |
Chen CJ, Lin Z, Huang HH, Pan X, Zhou TL, Luo HD, et al. Revealing the intrinsic decay of mechanoluminescence for achieving ultrafast-response stress sensing. Adv Funct Mater. 2023;33:2304917.
|
| [49] |
Soon MJ, Song Sk, Lee SK, Choi B. Mechanically driven light-generator with high durability. Appl Phys Lett. 2013;102:361.
|
| [50] |
Tarek M, Ray T. Adaptive continuation solid isotropic material with penalization for volume constrained compliance minimization. Comput Methods Appl Mech Eng. 2020;363:112880.
|
| [51] |
Haider I, Gul IH, Aziz S, Faraz MI, Khan MA, Jaffery SHI, et al. Environmental aging of reinforced polymer composite radome: reliability and performance investigation. Front Mater. 2024;11:1427541.
|
| [52] |
García-Rodríguez S, García I, García-Rodríguez A, Díez-Mediavilla M, Alonso-Tristán C. Solar ultraviolet irradiance characterization under all sky conditions in Burgos, Spain. Appl Sci. 2022;12:10407.
|