留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Information Metamaterials: bridging the physical world and digital world

Qian Ma Tie Jun Cui

Qian Ma, Tie Jun Cui. Information Metamaterials: bridging the physical world and digital world[J]. PhotoniX. doi: 10.1186/s43074-020-00006-w
引用本文: Qian Ma, Tie Jun Cui. Information Metamaterials: bridging the physical world and digital world[J]. PhotoniX. doi: 10.1186/s43074-020-00006-w
Qian Ma, Tie Jun Cui. Information Metamaterials: bridging the physical world and digital world[J]. PhotoniX. doi: 10.1186/s43074-020-00006-w
Citation: Qian Ma, Tie Jun Cui. Information Metamaterials: bridging the physical world and digital world[J]. PhotoniX. doi: 10.1186/s43074-020-00006-w

Information Metamaterials: bridging the physical world and digital world

doi: 10.1186/s43074-020-00006-w
基金项目: 

111 Project (111-2-05)

Fund for International Cooperation and Exchange of National Natural Science Foundation of China (61761136007).

National Natural Science Foundation of China (61631007, 61571117, 61501112, 61501117, 61522106, 61731010, 61735010, 61722106, 61701107, and 61701108)

National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202, and 2017YFA0700201)

Information Metamaterials: bridging the physical world and digital world

Funds: 

111 Project (111-2-05)

Fund for International Cooperation and Exchange of National Natural Science Foundation of China (61761136007).

National Natural Science Foundation of China (61631007, 61571117, 61501112, 61501117, 61522106, 61731010, 61735010, 61722106, 61701107, and 61701108)

National Key Research and Development Program of China (2017YFA0700201, 2017YFA0700202, and 2017YFA0700201)

  • 摘要: Over the past 5 years, digital coding and programmable metamaterials have been developed rapidly since their first exhibition in 2014. The iconic feature of the digital coding metamaterial is using digital codes like "0" and "1" to represent the distinct electromagnetic (EM) responses. This seemingly trivial progress has successfully reform the design theory from the effective medium to coding patterns, bridging the physical world and digital information world. More interestingly, beyond the simple coding on the parameters or patterns, the digital coding metamaterials are more intend to introduce the concept of direct interactions and operations of digital information within EM fields, to realize information processing, transmission or recognition. To accurately exhibit the informational specialties, we classify the coding metamaterials, digital metamaterials and programmable metamaterials, as well as other information-operating metamaterials, as information metamaterials. In this review article, we firstly introduce the digital coding concept, working mechanism, and related design methods. Then, three important theories including the scattering pattern calculation, convolution operation, and entropy of digital coding metamaterials, are discussed in details. Finally we introduce several system-level works based on the information metamaterials, such as the new-architecture wireless communication systems and reprogrammable imaging systems, to show the powerful manipulation capabilities of information metamaterials. As the next generation of information metamaterials, two proofof-concept smart metamaterials and their advanced architectures are discussed. In the summary, the development track of information metamaterials and future trends are presented.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Veselago VG. The Electrodynamics of Substances with Simultaneously Negative Values of ɛ and μ[J]. Sov Phys Usp. 1968;10(4):509.
    [2] Pendry JB, et al. Magnetism from conductors and enhanced nonlinear phenomena. 2000;47(11):2075–84.
    [3] Smith DR, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184–7.
    [4] Pendry JB. Negative refraction makes a perfect lens. Phys Rev Lett. 2000;85(18):3966–9.
    [5] Eleftheriades GV, Iyer AK, Kremer PC. Planar negative refractive index media using periodically LC loaded transmission lines. IEEE Trans Microw Theory Tech. 2002;50(12):2702–12.
    [6] Hoffman AJ, et al. Negative refraction in semiconductor metamaterials. Nat Mater. 2007;6(12):946–50.
    [7] Houck AA, et al. Experimental observations of a left-handed material that obeys Snell's law. Phys Rev Lett. 2003;90(13):137401.
    [8] Shelby RA, et al. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–9.
    [9] Mocella V, et al. Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial. Phys Rev Lett. 2009;102(13):133902.
    [10] Huang X, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater. 2011;10(8):582.
    [11] Feng S. Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials. Phys Rev Lett. 2012;108(19):193904.
    [12] Schurig D, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314(5801):977–80.
    [13] Kundtz N, Smith DR. Extreme-angle broadband metamaterial lens. Nat Mater. 2010;9(2):129.
    [14] Ergin T, et al. Three-dimensional invisibility cloak at optical wavelengths. Science. 2010;328(5976):337–9.
    [15] Hui FM, Cui TJ. Three-dimensional broadband ground-plane cloak made of metamaterials. Nat Commun. 2010;1(3):21.
    [16] Ma Q, et al. Experiments on active cloaking and illusion for Laplace equation. Phys Rev Lett. 2013;111(17):173901.
    [17] Yang F, et al. DC electric invisibility cloak. Phys Rev Lett. 2012;109(5):053902.
    [18] Cheng Q, et al. An omnidirectional electromagnetic absorber made of metamaterials. New J Physics. 12(6):063006.
    [19] Sheng C, et al. Trapping light by mimicking gravitational lensing. Nat Photonics. 2013;7(11):902.
    [20] Ramakrishna SA, et al. Imaging the near field. J Mod Opt. 2003;50(9):1419–30.
    [21] Jiang WX, et al. Broadband All-Dielectric Magnifying Lens for Far-Field High-Resolution Imaging. Adv Mater. 25(48):6963–8.
    [22] Xiang W, et al. A broadband transformation-optics metasurface lens. Applied Physics Lett. 2014;104(15):151601–4.
    [23] Ma Q, et al. Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity. J Opt. 2018;20(4):045101.
    [24] Mei ZL, et al. A half Maxwell fish-eye lens antenna based on gradient-index metamaterials. IEEE Trans Antennas Propag. 2011;60(1):398–401.
    [25] Qi MQ, et al. Tailoring radiation patterns in broadband with controllable aperture field using metamaterials. IEEE Trans Antennas Propag. 2013;61(11):5792–8.
    [26] Chen X, et al. Three-dimensional broadband and high-directivity lens antenna made of metamaterials. J Appl Physics. 110(4):044904.
    [27] Lin XQ, et al. Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens. Appl Phys Lett. 92(13):131904.
    [28] Holloway CL, Dienstfrey A, Kuester EF, O’Hara JF, Azad AK, Taylor AJ. Metamaterials. 2009;3:100.
    [29] Akselrod GM, et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv Mater. 2015;27(48):8028–34.
    [30] Yao Y, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett. 2014;14(11):6526–32.
    [31] Li J, et al. Bidirectional perfect absorber using free substrate plasmonic metasurfaces. Adv Optical Mater. 2017;5(12):1700152.
    [32] Guo W, et al. Ultra-broadband infrared metasurface absorber. Opt Express. 2016;24(18):20586–92.
    [33] Bossard JA, et al. Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano. 2014;8(2):1517–24.
    [34] Ding X, et al. Ultrathin Pancharatnam–berry metasurface with maximal cross-polarization efficiency. Adv Mater. 2015;27(7):1195–200.
    [35] Cong L, et al. A perfect metamaterial polarization rotator. Appl Phys Lett. 2013;103(17):171107.
    [36] Su P, et al. An ultra-wideband and polarization-independent Metasurface for RCS reduction. Sci Rep. 2016;6:20387.
    [37] Cheng YZ, et al. Ultrabroadband reflective polarization convertor for terahertz waves. Appl Phys Lett. 2014;105(18):26.
    [38] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces. Phys Rev Appl. 2014;2(4):044012.
    [39] Yin X, et al. Photonic spin hall effect at metasurfaces. Science. 2013;339(6126):1405–7.
    [40] Lin J, et al. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 2013;13(9):4269–74.
    [41] Yu P, et al. Generation of vector beams with arbitrary spatial variation of phase and linear polarization using plasmonic metasurfaces. Opt Lett. 2015;40(14):3229–32.
    [42] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–50.
    [43] Huang L, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv Mater. 2015;27(41):6444–9.
    [44] Zheng G, et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10(4):308.
    [45] Shalaev MI, et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 2015;15(9):6261–6.
    [46] Zhang H, et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv Optical Mater. 2018;6(1):1700773.
    [47] Luo J, et al. Highly efficient wavefront manipulation in terahertz based on plasmonic gradient metasurfaces. Opt Lett. 2014;39(8):2229–31.
    [48] Cheng J, et al. Wave manipulation with designer dielectric metasurfaces. Opt Lett. 2014;39(21):6285–8.
    [49] Liu X, et al. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt Express. 2017;25(1):191–201.
    [50] Ma G, et al. Acoustic metasurface with hybrid resonances. Nat Mater. 2014;13(9):873.
    [51] Xie B, et al. Coding acoustic metasurfaces. Adv Mater. 2017;29(6):1603507.
    [52] Xie Y, et al. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat Commun. 2014;5:5553.
    [53] Mei J, Wu Y. Controllable transmission and total reflection through an impedance-matched acoustic metasurface. New J Phys. 2014;16(12):123007.
    [54] Esfahlani H, et al. Acoustic carpet cloak based on an ultrathin metasurface. Phys Rev B. 2016;94(1):014302.
    [55] Zhao J, et al. Achieving flexible low-scattering metasurface based on randomly distribution of meta-elements. Opt Express. 2016;24(24):27849–57.
    [56] Cui TJ, et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl. 2014;3:e218.
    [57] Cui TJ. Microwave metamaterials. Natl Sci Rev. 2018;5(2):134–6.
    [58] Liu S, et al. Convolution operations on coding Metasurface to reach flexible and continuous controls of terahertz. Adv Sci. 2016;3(10):1600156.
    [59] Cui T-J, et al. Information entropy of coding metasurface. Light Sci Appl. 2016;5:e16172.
    [60] Wu RY, et al. Addition theorem for digital coding Metamaterials. Adv Optical Mater. 2018;6(5).
    [61] Li J, et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-berry coding metasurfaces. Nanoscale. 2019;11(12):5746–53.
    [62] Bao L, et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses. Appl Phys Lett. 2018;113(6):063502.
    [63] Wu RY, et al. Digital Metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations. Adv Optical Mater. 2019;7(8):1801429.
    [64] Ma Q, et al. Beam-editing coding Metasurfaces based on polarization bit and orbital-angular-momentum-mode bit. Adv Optical Mater. 2017;5(23):1700548.
    [65] Sui S, et al. Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces. Appl Phys Lett. 2016;109(1):014104.
    [66] Iqhal S, et al. Polarization-selective dual-band digits coding metasurface for controls of transmitted waves. J Physics D-Appl Physics. 2018;51(28):285103.
    [67] Ding G, et al. Dual-Helicity decoupled coding Metasurface for independent spin-to-orbital angular momentum conversion. Phys Rev Appl. 2019;11(4):044043.
    [68] Han J, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface. Optical Materials Express. 2018;8(11):3470–8.
    [69] Zheng Q, et al. Efficient orbital angular momentum vortex beam generation by generalized coding metasurface. Appl Phys. 2019;125(2):136.
    [70] Ji W, et al. High-efficiency and ultra-broadband asymmetric transmission metasurface based on topologically coding optimization method. Opt Express. 2019;27(3):2844–54.
    [71] Katare KK, et al. Realization of Split beam antenna using transmission-type coding Metasurface and planar Lens. IEEE Trans Antennas Propag. 2019;67(4):2074–84.
    [72] Li F-F, et al. Transmission and radar cross-section reduction by combining binary coding metasurface and frequency selective surface. Opt Express. 2018;26(26):33878–87.
    [73] Liu S, et al. Anomalous refraction and nondiffractive Bessel-beam generation of terahertz waves through transmission-type coding Metasurfaces. Acs Photonics. 2016;3(10):1968–77.
    [74] Shen Z, et al. Design of transmission-type coding metasurface and its application of beam forming. Appl Phys Lett. 2016;109(12):121103.
    [75] Zhang L, et al. Transmission-reflection-integrated multifunctional coding Metasurface for full-space controls of electromagnetic waves. Adv Funct Mater. 2018;28(33):1802205.
    [76] Wan X, et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci Rep. 2016;6:20663.
    [77] Zhang L, et al. Space-time-coding digital metasurfaces. Nat Commun. 2018;9(1):4334.
    [78] Dai JY, et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci Appl. 2018;7:90.
    [79] Cui TJ, et al. Direct transmission of digital message via programmable coding metasurface. Research. 2019;2019:2584509.
    [80] Zhao J, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl Sci Rev. 2019;6(2):231–8.
    [81] Li L, et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun. 2017;8:197.
    [82] Li L, et al. Machine-learning reprogrammable metasurface imager. Nat Commun. 2019;10:1082.
    [83] Li YB, et al. Transmission-type 2-bit programmable Metasurface for single-sensor and single-frequency microwave imaging. Sci Rep. 2016;6.
    [84] Ma Q, et al. Controllable and programmable nonreciprocity based on detachable digital coding Metasurface. Adv Optical Mater. 2019;7:1901285.
    [85] Zhang L, et al. Breaking reciprocity with space-time-coding digital Metasurfaces. Adv Mater. 2019;31(41):1904069.
    [86] Ma Q, et al. Smart metasurface with self-adaptively reprogrammable functions. Light Sci Appl. 2019;8(1):1–12.
    [87] Li L, et al. Intelligent metasurface imager and recognizer. Light Sci Appl. 2019;8(1):1–9.
    [88] Gao L-H, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci Appl. 2015;4:e324.
    [89] Zhang XG, et al. Light-controllable digital coding Metasurfaces. Advanced Sci. 2018;5(11):1801028.
    [90] Liu S, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light Sci Appl. 2016;5:e16076.
    [91] Yu NF, et al. Light propagation with phase discontinuities: generalized Laws of reflection and refraction. Science. 2011;334(6054):333–7.
    [92] Chen K, Zhang N, Ding G, Zhao J, Jiang T, Feng Y. Active Anisotropic Coding Metasurface with Independent Real-Time Reconfigurability for Dual Polarized Waves. Advanced Materials Technologies. 2019;19:1900930.
    [93] Tan H, Deng J, Zhao R, Wu X, Li G, Huang L, Reviews P. A free-space orbital angular momentum multiplexing communication system based on a Metasurface. Laser Photonics Rev. 2019;13(6):1800278.
    [94] Zhang L, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam-berry coding Metasurfaces. ACS Appl Mater Interfaces. 2017;9(41):36447–55.
    [95] Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.
    [96] Shcherbakov MR, Lemasters R, Fan Z, Song J, Lian T, Harutyunyan H, Shvets GJO. Time-variant metasurfaces enable tunable spectral bands of negative extinction. Optica. 2019;6(11):1441–2.
    [97] Guo X, Ding Y, Duan Y, Ni X. Nonreciprocal Metasurface with space-time phase modulation. Light Sci Appl. 2019;8:1–9.
    [98] Tse D. Fundamentals of wireless communication: Cambridge University Press; 2004.
    [99] Hunt J, Driscoll T, Mrozack A. Metamaterial Apertures for Computational Imaging. Science. 339(6117):310–3.
    [100] Xu X, Peng B, Li D. Flexible Visible–Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing. Nano Lett. 11(8):3232–8.
    [101] Li Z, Zhang T, Wang Y, Kong W, Zhang J, Huang Y, Reviews P. Achromatic broadband super-resolution imaging by super-oscillatory metasurface. Laser Photonics Rev. 2018;12(10):1800064.
    [102] Chen K, Ding G, Hu G, Jin Z, Zhao J, Feng Y, Qiu CWJAM. Directional Janus Metasurface. Adv Mater. 2019;32:e1906352.
    [103] Duarte MF, et al. Single-pixel imaging via compressive sampling. IEEE Signal Process Mag. 2008;25:83.
    [104] Zhao W, et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt Lett. 2016;41:147.
    [105] Ghanekar A, et al. High-rectification near-field thermal diode using phase lichange periodic nanostructure. Appl Phys Lett. 2016;109:123106.
    [106] Wang L, Li L, Li Y, Zhang H, Cui TJ. Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface. Sci Rep. 2016;6:26959.
    [107] Fromenteze T, et al. Computational polarimetric microwave imaging. Opt Express. 2017;25:27488–505.
    [108] Neifeld MA, Shankar P. Feature-specific imaging. Appl Opt. 2003;42:3379–89.
    [109] Pal HS, Ganotra D, Neifeld MA. Face recognition by using featurespecific imaging. Appl Opt. 2005;44:3378–794.
    [110] Nayar SK, Branzoi V. Programmable imaging: toward a flexible camera. Int J Comput Vis. 2006;20:7–22.
    [111] Kulkarni K, Turaga P. Reconstruction-free action inference from compressive imagers. IEEE Trans Pattern Anal Mach Intell. 2016;38:772–84.
    [112] Liu S, Cui TJ. Concepts, working principles, and applications of coding and programmable Metamaterials. Adv Opt Mater. 2017;5(22):1700624.
    [113] Cui TJ, et al. Information metamaterials and metasurfaces. J Mater Chem C. 2017;5(15):3644–68.
    [114] Xiao J, et al. A survey on wireless indoor localization from the device perspective. ACM Comput Surv. 2016;49:25.
    [115] Pu QF, et al. Whole-home gesture recognition using wireless signals. ACM, Miami, Florida: Proceedings of the 19th Annual International Conference on Mobile Computing & Networking; 2013. p. 27–38.
    [116] Sadreazami H, et al. CapsFall: fall detection using ultra-wideband radar and capsule network. IEEE Access. 2019;7:55336–43.
    [117] Zhao MM, et al. Through-wall human pose estimation using radio signals. IEEE, Salt Lake City, UT: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2018. p. 7356–65.
  • 加载中
计量
  • 文章访问数:  271
  • HTML全文浏览量:  31
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-02
  • 录用日期:  2020-01-29
  • 网络出版日期:  2020-03-02

目录

    /

    返回文章
    返回