Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement
doi: 10.1186/s43074-020-00011-z
Terahertz spectroscopy in biomedical field: a review on signal-to-noise ratio improvement
-
摘要: With the non-ionizing, non-invasive, high penetration, high resolution and spectral fingerprinting features of terahertz (THz) wave, THz spectroscopy has great potential for the qualitative and quantitative identification of key substances in biomedical field, such as the early diagnosis of cancer, the accurate boundary determination of pathological tissue and non-destructive detection of superficial tissue. However, biological samples usually contain various of substances (such as water, proteins, fat and fiber), resulting in the signal-to-noise ratio (SNR) for the absorption peaks of target substances are very small and then the target substances are hard to be identified. Here, we present recent works for the SNR improvement of THz signal. These works include the usage of attenuated total reflection (ATR) spectroscopy, the fabrication of sample-sensitive metamaterials, the utilization of different agents (including contrast agents, optical clearing agents and aptamers), the application of reconstruction algorithms and the optimization of THz spectroscopy system. These methods have been proven to be effective theoretically, but only few of them have been applied into actual usage. We also analyze the reasons and summarize the advantages and disadvantages of each method. At last, we present the prospective application of THz spectroscopy in biomedical field.
-
关键词:
Abstract: With the non-ionizing, non-invasive, high penetration, high resolution and spectral fingerprinting features of terahertz (THz) wave, THz spectroscopy has great potential for the qualitative and quantitative identification of key substances in biomedical field, such as the early diagnosis of cancer, the accurate boundary determination of pathological tissue and non-destructive detection of superficial tissue. However, biological samples usually contain various of substances (such as water, proteins, fat and fiber), resulting in the signal-to-noise ratio (SNR) for the absorption peaks of target substances are very small and then the target substances are hard to be identified. Here, we present recent works for the SNR improvement of THz signal. These works include the usage of attenuated total reflection (ATR) spectroscopy, the fabrication of sample-sensitive metamaterials, the utilization of different agents (including contrast agents, optical clearing agents and aptamers), the application of reconstruction algorithms and the optimization of THz spectroscopy system. These methods have been proven to be effective theoretically, but only few of them have been applied into actual usage. We also analyze the reasons and summarize the advantages and disadvantages of each method. At last, we present the prospective application of THz spectroscopy in biomedical field.-
Key words:
- Terahertz spectroscopy /
- SNR improvement /
- Metamaterial /
- ATR spectroscopy /
- Agent /
- Mixture algorithm /
- System optimization
-
[1] Pickwell E, Wallace V. Biomedical applications of terahertz technology. J Phys D Appl Phys. 2006;39(17):R301. [2] Danciu M, Alexa-Stratulat T, Stefanescu C, Dodi G, Tamba BI, Mihai CT, Stanciu GD, Luca A, Spiridon IA, Ungureanu LB. Terahertz spectroscopy and imaging: a cutting-edge method for diagnosing digestive cancers. Materials. 2019;12(9):1519. [3] Peng Y, Zhu Y, Gu M, Zhuang S. Terahertz spatial sampling with subwavelength accuracy. Light Sci Appl. 2019;8:72. [4] Zeitler JA, Kogermann K, Rantanen J, Rades T, Taday PF, Pepper M, Aaltonen J, Strachan CJ. Drug hydrate systems and dehydration processes studied by terahertz pulsed spectroscopy. Int J Pharm. 2007;334(1–2):78–84. [5] Kawase K, Ogawa Y, Watanabe Y, Inoue H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express. 2003;11(20):2549–54. [6] Sibik J, Löbmann K, Rades T, Zeitler JA. Predicting crystallization of amorphous drugs with terahertz spectroscopy. Mol Pharm. 2015;12(8):3062–8. [7] Davies AG, Burnett AD, Fan W, Linfield EH, Cunningham JE. Terahertz spectroscopy of explosives and drugs. Mater Today. 2008;11(3):18–26. [8] Taday PF, Bradley I, Arnone D, Pepper M. Using terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. J Pharm Sci. 2003;92(4):831–8. [9] Li T, Ma H, Peng Y, Chen X, Zhu Z, Wu X, Kou T, Song B, Guo S, Liu L. Gaussian numerical analysis and terahertz spectroscopic measurement of homocysteine. Biomed Optics Express. 2018;9(11):5467–76. [10] Chen W, Peng Y, Jiang X, Zhao J, Zhao H, Zhu Y. Isomers identification of 2-hydroxyglutarate acid disodium salt (2HG) by terahertz time-domain spectroscopy. Sci Rep. 2017;7(1):12166. [11] Altan H, Ozek NS, Gok S, Ozyurt I, Severcan F. Monitoring of tryptophan as a biomarker for cancerous cells in Terahertz (THz) sensing. Paper present in Optical Biopsy XIV: Toward Real-Time Spectroscopic Imaging and Diagnosis, SPIE BiOS, San Francisco, California, United States, 2016. [12] Joseph CS, Yaroslavsky AN, Al-Arashi M, Goyette TM, Dickinson JC, Gatesman AJ, Soper BW, Forgione CM, Horgan TM, Ehasz EJ. Terahertz spectroscopy of intrinsic biomarkers for non-melanoma skin cancer. In: Terahertz Technology and Applications II, SPIE OPTO: Integrated Optoelectronic Devices, San Jose, California, United States; 2009. [13] Wu X, Dai Y, Wang L, Peng Y, Lu L, Zhu Y, Shi Y, Zhuang S. Diagnosis of methylglyoxal in blood by using far-infrared spectroscopy and o-phenylenediamine derivation. Biomedical Optics Express. 2020;11(2):963–70. [14] Fischer B, Walther M, Jepsen PU. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys Med Biol. 2002;47(21):3807. [15] Brucherseifer M, Nagel M, Haring Bolivar P, Kurz H, Bosserhoff A, Büttner R. Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl Phys Lett. 2000;77(24):4049–51. [16] Markelz A, Roitberg A, Heilweil EJ. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem Phys Lett. 2000;320(1–2):42–8. [17] Cheon H, Yang H-j, Lee S-H, Kim YA, Son J-H. Terahertz molecular resonance of cancer DNA. Sci Rep. 2016;6:37103. [18] Oh SJ, Kang J, Maeng I, Suh J-S, Huh Y-M, Haam S, Son J-H. Nanoparticle-enabled terahertz imaging for cancer diagnosis. Opt Express. 2009;17(5):3469–75. [19] Brun M-A, Formanek F, Yasuda A, Sekine M, Ando N, Eishii Y. Terahertz imaging applied to cancer diagnosis. Phys Med Biol. 2010;55(16):4615. [20] Nakajima S, Hoshina H, Yamashita M, Otani C, Miyoshi N. Terahertz imaging diagnostics of cancer tissues with a chemometrics technique. Appl Phys Lett. 2007;90(4):041102. [21] Woodward RM, Cole BE, Wallace VP, Pye RJ, Arnone DD, Linfield EH, Pepper M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Med Biol. 2002;47(21):3853. [22] Fitzgerald AJ, Wallace VP, Jimenez-Linan M, Bobrow L, Pye RJ, Purushotham AD, Arnone DD. Terahertz pulsed imaging of human breast tumors. Radiology. 2006;239(2):533–40. [23] Woodward R, Wallace V, Arnone D, Linfield E, Pepper M. Terahertz pulsed imaging of skin cancer in the time and frequency domain. J Biol Phys. 2003;29(2–3):257–9. [24] Ashworth PC, Pickwell-MacPherson E, Provenzano E, Pinder SE, Purushotham AD, Pepper M, Wallace VP. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt Express. 2009;17(15):12444–54. [25] Meng K, T-n C, Chen T, Zhu L-g, Liu Q, Li Z, Li F, S-c Z, Z-r L, Feng H. Terahertz pulsed spectroscopy of paraffin-embedded brain glioma. J Biomed Opt. 2014;19(7):077001. [26] Newnham DA, Taday PF. Pulsed terahertz attenuated total reflection spectroscopy. Appl Spectrosc. 2008;62(4):394–8. [27] Shen Y-C. Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int J Pharm. 2011;417(1–2):48–60. [28] Shiraga K, Ogawa Y, Suzuki T, Kondo N, Irisawa A, Imamura M. Determination of the complex dielectric constant of an epithelial cell monolayer in the terahertz region. Appl Phys Lett. 2013;102(5):053702. [29] Grognot M, Gallot G. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection. Appl Phys Lett. 2015;107(10):103702. [30] Zou Y, Liu Q, Yang X, Huang H-C, Li J, Du L-H, Li Z-R, Zhao J-H, Zhu L-G. Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy. Biomed Optics Express. 2018;9(1):14–24. [31] Huang H, Liu Q, Zhu L, Zou Y, Li Z, Li Z. Dual-prism based terahertz time-domain attenuated total reflection spectroscopy and its application to characterise the hydration state of L-threonine in solution. Opt Commun. 2019;437:133–8. [32] Wang Y, Jiang Z, Xu D, Chen B, Wang S, Mu N, Chen T, Feng H, Yao J. Dielectric responses of living glial cell monolayer based on terahertz ATR spectroscopy. In: Infrared, Millimeter-Wave, and Terahertz Technologies VI, SPIE/COS Photonics Asia, Hangzhou, China, 2019. [33] Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming DR, Chen Q. Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev. 2016;10(6):962–9. [34] Geng Z, Zhang X, Fan Z, Lv X, Chen H. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci Rep. 2017;7(1):16378. [35] Al-Naib I. Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J Selected Topics Quantum Electronics. 2016;23(4):1–5. [36] Zhang Z, Ding H, Yan X, Liang L, Wei D, Wang M, Yang Q, Yao J. Sensitive detection of cancer cell apoptosis based on the non-bianisotropic metamaterials biosensors in terahertz frequency. Optical Materials Express. 2018;8(3):659–67. [37] Qin B, Li Z, Hu F, Hu C, Chen T, Zhang H, Zhao Y. Highly sensitive detection of carbendazim by using terahertz time-domain spectroscopy combined with metamaterial. IEEE Transact Terahertz Sci Technol. 2018;8(2):149–54. [38] Shin H, Jang H, Ok G. Highly sensitive detection of 4-Methylimidazole using a terahertz Metamaterial. Sensors. 2018;18(12):4304. [39] Hong J, Jun S, Cha S, Park J, Lee S, Shin G, Ahn Y. Enhanced sensitivity in THz plasmonic sensors with silver nanowires. Sci Rep. 2018;8(1):15536. [40] Keshavarz A, Vafapour Z. Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sensors J. 2019;19(13):5161–6. [41] Zhao X, Lin Z, Wang Y, Yang X, Yang K, Zhang Y, Peng J, de la Chapelle ML, Zhang L, Fu W. Label-free self-referenced sensing of living cells by terahertz metamaterial-based reflection spectroscopy. Biomed Optics Express. 2019;10(3):1196–206. [42] Roh Y, Lee S-H, Kang B, Wu JW, Ju B-K, Seo M. Terahertz optical characteristics of two types of metamaterials for molecule sensing. Opt Express. 2019;27(13):19042–9. [43] Rodrigo D, Limaj O, Janner D, Etezadi D, De Abajo FJG, Pruneri V, Altug H. Mid-infrared plasmonic biosensing with graphene. Science. 2015;349(6244):165–8. [44] P-r T, Li J, L-h D, Liu Q, Q-x P, J-h Z, Zhu B, Z-r L, Zhu L-g. Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure. Opt Express. 2018;26(23):30655–66. [45] Xu W, Xie L, Zhu J, Tang L, Singh R, Wang C, Ma Y, Chen H-T, Ying Y. Terahertz biosensing with a graphene-metamaterial heterostructure platform. Carbon. 2019;141:247–52. [46] Lee S-H, Choe J-H, Kim C, Bae S, Kim J-S, Park Q-H, Seo M. Graphene assisted terahertz Metamaterials for sensitive bio-sensing. Sensors Actuators B Chem. 2020;310:127841. [47] Zhang R, Zhang L, Wu T, Zuo S, Wang R, Zhang C, Zhang J, Fang J. Contrast-enhanced continuous-terahertz-wave imaging based on superparamagnetic iron oxide nanoparticles for biomedical applications. Opt Express. 2016;24(8):7915–21. [48] Musina GR, Dolganova IN, Malakhov KM, Gavdush AA, Chernomyrdin NV, Tuchina DK, Komandin GA, Chuchupal SV, Cherkasova OP, Zaytsev KI. Terahertz spectroscopy of immersion optical clearing agents: DMSO, PG, EG, PEG. Paper presented at Millimetre Wave and Terahertz Sensors and Technology XI, SPIE Security + Defence, 2018, Berlin, Germany. [49] Hassan EM, Mohamed A, DeRosa MC, Willmore WG, Hanaoka Y, Kiwa T, Ozaki T. High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. Sensors Actuators B Chem. 2019;287:595–601. [50] Huang Q, Zou Y, Zhong S, Yang X, Li J, Huang W, Zhu H, Cheng C, Ding M, Zhu L-G. Silica-coated gold Nanorods with high Photothermal efficiency and biocompatibility as a contrast agent for in vitro terahertz imaging. J Biomed Nanotechnol. 2019;15(5):910–20. [51] Yang K, Yang X, Zhao X, Lamy de la Chapelle M, Fu W. THz spectroscopy for a rapid and label-free cell viability assay in a microfluidic Chip based on an optical clearing agent. Anal Chem. 2018;91(1):785–91. [52] Sadrara M, Miri M. Electric and magnetic hotspots via hollow Insb microspheres for enhanced terahertz spectroscopy. Sci Rep. 2019;9(1):2926. [53] Sterczewski LA, Grzelczak MP, Nowak K, Szlachetko B, Plinski E. Bayesian separation algorithm of THz spectral sources applied to D-glucose monohydrate dehydration kinetics. Chem Phys Lett. 2016;644:45–50. [54] Li Z. Wavelength selection for quantitative analysis in terahertz spectroscopy using a genetic algorithm. IEEE Transact Terahertz Sci Technol. 2016;6(5):658–63. [55] Li Z, Guan A, Ge H, Lian F. Wavelength selection of amino acid THz absorption spectra for quantitative analysis by a self-adaptive genetic algorithm and comparison with mwPLS. Microchem J. 2017;132:185–9. [56] Qiao X, Zhang X, Ren J, Zhang D, Cao G, Li L. Mean estimation empirical mode decomposition method for terahertz time-domain spectroscopy de-noising. Appl Opt. 2017;56(25):7138–45. [57] Zou Y, Li J, Cui Y, Tang P, Du L, Chen T, Meng K, Liu Q, Feng H, Zhao J. Terahertz spectroscopic diagnosis of myelin deficit brain in mice and rhesus monkey with chemometric techniques. Sci Rep. 2017;7(1):1–9. [58] Petrov NV, Balbekin NS, Kulya MS, Gorodetsky AA. Reconstruction enhancement of noisy data in terahertz pulse time-domain holography by iterative procedure. Paper presented at Unconventional Optical Imaging, SPIE Photonics Europe, Strasbourg, France, 2018. [59] Peng Y, Shi C, Xu M, Kou T, Wu X, Song B, Ma H, Guo S, Liu L, Zhu Y. Qualitative and quantitative identification of components in mixture by terahertz spectroscopy. IEEE Transact Terahertz Sci Technol. 2018;8(6):696–701. [60] Liu H, Fan Y-X, Li L, Chen H-G, Wang P-F, Tao Z-Y. Self-adaptive terahertz spectroscopy from atmospheric vapor based on Hilbert-Huang transform. Opt Express. 2018;26(21):27279–93. [61] Cui G, Peng W, Liu Y, Chang CA. Denoising algorithm for terahertz time domain spectrum based on lifting wavelet transform. In: Second Symposium on Novel Technology of X-Ray Imaging, Second Symposium on Novel Technology of X-Ray Imaging, Hefei, China, 2018. [62] Huang P, Huang Z, Lu X, Cao Y, Yu J, Hou D, Zhang G. Study on glycoprotein terahertz time-domain spectroscopy based on composite multiscale entropy feature extraction method. Spectrochimica Acta Part A Mol Biomol Spectrosc. 2019;229:117948. [63] Lepeshov S, Gorodetsky A, Krasnok A, Rafailov E, Belov P. Enhancement of terahertz photoconductive antenna operation by optical nanoantennas. Laser Photonics Rev. 2017;11(1):1600199. [64] Zarrabi FB, Naser-Moghadasi M, Heydari S, Maleki M, Arezomand AS. Cross-slot nano-antenna with graphene coat for bio-sensing application. Opt Commun. 2016;371:34–9. [65] Zangeneh-Nejad F, Safian R. Significant enhancement in the efficiency of photoconductive antennas using a hybrid graphene molybdenum disulphide structure. J Nanophotonics. 2016;10(3):036005. [66] Collier CM, Krupa JD, Hristovski IR, Stirling TJ, Bergen MH, Holzman JF. Textured semiconductors for enhanced photoconductive terahertz emission. In: Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications IX, SPIE OPTO, San Francisco, California, United States, 2016. [67] Amanatiadis SA, Karamanos TD, Kantartzis NV. Radiation efficiency enhancement of graphene THz antennas utilizing metamaterial substrates. IEEE Antennas Wireless Propagation Lett. 2017;16:2054–7. [68] Gupta A, Rana G, Bhattacharya A, Singh A, Jain R, Bapat RD, Duttagupta S, Prabhu S. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation. APL Photonics. 2018;3(5):051706. [69] Kazemi AH, Mahani FF, Mokhtari A. Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band. Optik. 2019;185:114–20. [70] Korolev VI, Pushkarev AP, Obraztsov PA, Tsypkin AN, Zakhidov AA, Makarov SV. Enhanced terahertz emission from imprinted halide perovskite nanostructures. Nanophotonics. 2019;9(1):187–94. [71] Cheng C, Lu Y, Zhang D, Ruan F, Li G. Gain enhancement of terahertz patch antennas by coating epsilon-near-zero metamaterials. Superlattices Microstructures. 2020;139:106390.. [72] Jin Q, Dai J, EY, Zhang X-C. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Appl Phys Lett. 2018;113(26):261101. [73] Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H. Current-enhanced broadband THz emission from Spintronic devices. Adv Optical Mater. 2019;7(4):1801608. [74] Ironside DJ, Salas R, Chen P-Y, Le KQ, Alú A, Bank SR. Enhancing THz generation in photomixers using a metamaterial approach. Opt Express. 2019;27(7):9481–94. [75] Koulouklidis AD, Gollner C, Shumakova V, Fedorov VY, Pugžlys A, Baltuška A, Tzortzakis S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat Commun. 2020;11(1):1–8. [76] Mou J, Xue Q, Guo D, Lv X. A THz detector chip with printed circular cavity as package and enhancement of antenna gain. IEEE Trans Antennas Propag. 2016;64(4):1242–9. [77] Xiao P, Tu X, Jiang C, Wan C, Jiang Z, Zhai S, Gu M, Jia X, Kang L, Chen JA. A Sensitive coupling structure for terahertz detectors array. In: Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X, SPIE OPTO, San Francisco, California, United States, 2017. [78] Siday T, Thompson RJ, Glass S, Luk T-S, Reno JL, Brener I, Mitrofanov O. An efficient terahertz detector based on an optical hybrid cavity. Paper presented at Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications XI, SPIE OPTO, San Francisco, California, United States, 2018. [79] Cheng C, Chen W, Lu Y, Ruan F, Li G. Large near-field enhancement in terahertz antennas by using hyperbolic Metamaterials with hole arrays. Appl Sci. 2019;9(12):2524.
点击查看大图
计量
- 文章访问数: 158
- HTML全文浏览量: 1
- PDF下载量: 8
- 被引次数: 0