Multi-vortex laser enabling spatial and temporal encoding
-
摘要: Optical vortex is a promising candidate for capacity scaling in next-generation optical communications. The generation of multi-vortex beams is of great importance for vortex-based optical communications. Traditional approaches for generating multivortex beams are passive, unscalable and cumbersome. Here, we propose and demonstrate a multi-vortex laser, an active approach for creating multi-vortex beams directly at the source. By printing a specially-designed concentric-rings pattern on the cavity mirror, multi-vortex beams are generated directly from the laser. Spatially, the generated multi-vortex beams are decomposable and coaxial. Temporally, the multi-vortex beams can be simultaneously self-mode-locked, and each vortex component carries pulses with GHz-level repetition rate. Utilizing these distinct spatial-temporal characteristics, we demonstrate that the multi-vortex laser can be spatially and temporally encoded for data transmission, showing the potential of the developed multi-vortex laser in optical communications. The demonstrations may open up new perspectives for diverse applications enabled by the multi-vortex laser.
-
关键词:
Abstract: Optical vortex is a promising candidate for capacity scaling in next-generation optical communications. The generation of multi-vortex beams is of great importance for vortex-based optical communications. Traditional approaches for generating multi-vortex beams are passive, unscalable and cumbersome. Here, we propose and demonstrate a multi-vortex laser, an active approach for creating multi-vortex beams directly at the source. By printing a specially-designed concentric-rings pattern on the cavity mirror, multi-vortex beams are generated directly from the laser. Spatially, the generated multi-vortex beams are decomposable and coaxial. Temporally, the multi-vortex beams can be simultaneously self-mode-locked, and each vortex component carries pulses with GHz-level repetition rate. Utilizing these distinct spatial-temporal characteristics, we demonstrate that the multi-vortex laser can be spatially and temporally encoded for data transmission, showing the potential of the developed multi-vortex laser in optical communications. The demonstrations may open up new perspectives for diverse applications enabled by the multi-vortex laser.-
Key words:
- Multi-vortex laser /
- Spatial encoding /
- Temporal encoding
-
[1] Yao A, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photon. 2011;3:161–204. [2] Franke-Arnold S, Allen L, Padgett MJ. Advances in optical angular momentum. Laser Photon Rev. 2008;2:299–313. [3] Dholakia K, Čižmár T. Shaping the future of manipulation. Nature Photon. 2002;5:335–42. [4] MacDonald MP, Paterson L, Volke-Sepulveda K, Arlt J, Sibbett W, Dholakia K. Creation and manipulation of three-dimensional optically trapped structures. Science. 2002;296:1101–3. [5] Padgett MJ, Bowman R. Tweezers with a twist. Nature Photon. 2011;5:343–8. [6] Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M. Spiral phase contrast imaging in microscopy. Opt Express. 2005;13:689–94. [7] Fang L, Padgett MJ, Wang J. Sharing a common origin between the rotational and linear Doppler effects. Laser & Photon Rev. 2017;11:1700183. [8] Vieira J, Trines RMGM, Alves EP, Fonseca RA, Mendonca JT, Bingham R, et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat Commun. 2016;7:10371. [9] Elias NM. Photon orbital angular momentum in astronomy. Astron Astrophys. 2008;492:883–922. [10] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature. 2001;412:313–6. [11] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–9. [12] Gibson G, Courtial J, Padgett MJ, Vasnetsov M, Pas’ko V, Barnet SM, et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express. 2004;12:5448–56. [13] Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 2012;6:488–96. [14] Lei T, Zhang M, Li Y, Jia P, Liu GN, Xu X, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Sci Appl. 2015;4:e257. [15] Wang J. Advances in communications using optical vortices. Photon Res. 2016;4:B14–28. [16] Wang J. Data information transfer using complex optical fields: a review and perspective. Chin Opt Lett. 2017;15:030005. [17] Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives. Chin Opt Lett. 2018;16:050006. [18] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 2013;340:1545–8. [19] Wang A, Zhu L, Liu J, Du C, Mo Q, Wang J. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network. Opt Express. 2015;23:29457–66. [20] Wang A, Zhu L, Chen S, Du C, Mo Q, Wang J. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Opt Express. 2016;24:11716–26. [21] Chen S, Liu J, Zhao Y, Zhu L, Wang A, Li S, et al. Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber. Sci. Rep. 2016;6:38181. [22] Zhu L, Liu J, Mo Q, Du C, Wang J. Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber. Opt Express. 2016;24:16934–44. [23] Zhu L, Wang A, Chen S, Liu J, Mo Q, Du C, et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Opt. Express. 2017;25:25637–45. [24] Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express. 2018;26:10038–47. [25] Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, et al. Optical communications using orbital angular momentum beams. Adv Opt Photon. 2015;7:66–106. [26] Wang J. Twisted optical communications using orbital angular momentum. Sci China Phys Mech Astron. 2019;62:034201. [27] Liu J, Li SM, Zhu L, Wang AD, Chen S, Klitis C, et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light: Sci Appl. 2018;7:17148. [28] Fu S, Zhai Y, Zhou H, Zhang J, Wang T, Yin C, et al. Demonstration of free-space one-to many multicasting link from orbital angular momentum encoding. Opt Lett. 2019;44:4753–6. [29] Fu S, Zhai Y, Zhou H, Zhang J, Wang T, Liu X, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying. Opt Express. 2019;27:33111–9. [30] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photon. 2016;8:200–27. [31] Beijersbergen MW, Coerwinkel RPC, Kristensen M, Woerdman JP. Helical wavefront laser beams produced with a spiral phase plate. Opt Commun. 1994;112:321–7. [32] Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element. Opt Express. 2015;23:26221–33. [33] Li S, Wang J. Adaptive power-controllable orbital angular momentum (OAM) multicasting. Sci Rep. 2015;5:9677. [34] Kim DJ, Kim JW. Direct generation of an optical vortex beam in a single-frequency Nd: YVO4 laser. Opt Lett. 2015;40:399–402. [35] Liu Q, Zhao Y, Zhou W, Zhang J, Wang L, Yao W. Shen D (2017) control of vortex helicity with a quater-wave plate in an Er: YAG ceramic solid state laser. IEEE Photonics J. 2017;9:1500408. [36] Huang X, Xu B, Cui S, Xu H, Cai Z, Chen L. Direct generation of vortex laser by rotating induced off-axis pumping. IEEE J Sel Top Quantum Electron. 2018;24:1601606. [37] Wang S, Zhang SL, Qiao HC, Li P, Hao MH, Yang HM, et al. Direct generation of vortex beams from a double-end polarized pumped Yb: KYW laser. Opt Express. 2018;26:26925–32. [38] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror. J Opt Soc Am A. 2010;27:2072–7. [39] Zhou J, Zhang W, Chen L. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter. Appl Phys Lett. 2016;108:111108. [40] Beijersbergen MW, Allen L, Van Der Veen HELO, Woerdman JP. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun. 1993;96:123–32. [41] Zhang Y, Yu H, Zhang H, Xu X, Xu J, Wang J. Self-mode-locked Laguerre-Gaussian beam with staged topological charge by thermal-optical field coupling. Opt Express. 2016;24:5514–22. [42] Chang MT, Liang HC, Su KW, Chen YF. Exploring transverse pattern formation in a dual-polarization self-mode-locked monolithic Yb: KGW laser and generating a 25-GHz subpicosecond vortex beam via gain competition. Opt Express. 2016;24:8754–62. [43] Li Z, Peng J, Li Q, Gao Y, Li J, Cao Q. Generation of picosecond vortex beam in a self-mode-locked Nd:YVO4 laser. Opt Lett. 2017;13:188–91. [44] Liang HC, Huang YJ, Lin YC, Lu TH, Chen YF, Huang KF. Picosecond optical vortex converted from multigigahertz self-mode-locked high-order Hermite-Gaussian Nd: GdVO4 lasers. Opt Lett. 2009;34:3842–4. [45] Igarashi K, Katoh K, Kikuchi K, Imai K, Kourogi M. Generation of 10-GHz 2-ps optical pulse train over the C band based on an optical comb generator and its application to 160-Gbit/s OTDM systems. In: 34th European conference on optical communication paper Tu. 3. D. I; 2008. [46] Hu H, Mulvad HCH, Peucheret C, Galili M, Clausen A, Jeppesen P, et al. 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation. Opt Express. 2011;19:343–9. [47] Chen YF, Huang YJ, Chiang PY, Lin YC. Controlling number of lasing modes for designing short-cavity self-mode-locked Nd-doped vanadate lasers. Appl Phys B Lasers Opt. 2010;103:841–6. [48] Huang YJ, Tzeng YS, Cho HH, Chen YF. Effect of spatial hole burning on a dual-wavelength mode-locked laser based on compactly combined dual gain media. Photon.Res. 2014;2:161–7. [49] Bai Y, Chen S, Wang Z, Zhang G. Novel self-mode-locking mechanism in narrow-band lasers. Appl Phys Lett. 1993;63:2597–9. [50] Shi JY, Fang Y, Chi N. Time division multiplexed orbital angular momentum access system. Optim Eng. 2016;55:036106. [51] Chen YF, Chang MY, Zhuang WZ, Su KW, Huang KF, Liang HC. Generation of sub-terahertz repetition rates from a monolithic self-mode-locked laser coupled with an external Fabry-Perot cavity. Laser Photon Rev. 2015;9:91–7. [52] Clarkson WA, Hanna DC. Effects of transverse-mode profile on slope efficiency and relaxation oscillations in a longitudinally-pumped laser. J Mod Opt. 1989;36:483–98.
点击查看大图
计量
- 文章访问数: 237
- HTML全文浏览量: 3
- PDF下载量: 23
- 被引次数: 0