[1] |
Sihvola A. Enabling optical analog computing with metamaterials. Science. 2014;343:144–5.
|
[2] |
Sneddon IN. Fourier transforms. New York: USA; 1995.
|
[3] |
Youssefi A, Zangeneh-Nejad F, Abdollahramezani S, Khavasi A. Analog computing by Brewster effect. Opt Lett. 2016;41:3467–70.
|
[4] |
Liu F, Wang T, Qiang L, Ye T, Zhang Z, Qiu M, et al. Compact optical temporal differentiator based on silicon microring resonator. Opt Express. 2008;16:15880–6.
|
[5] |
Berger NK, Levit B, Fischer B, Kulishov M, Plant DV, Azaña J. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Opt Express. 2007;15:371–81.
|
[6] |
Abdollahramezani S, Chizari A, Dorche AE, Jamali MV, Salehi JA. Dielectric metasurfaces solve differential and integro-differential equations. Opt Lett. 2017;42:1197–200.
|
[7] |
Zhu T, Zhou Y, Lou Y, Ye H, Qiu M, Ruan Z, et al. Plasmonic computing of spatial differentiation. Nat Commun. 2017;8:15391.
|
[8] |
Ferrera M, Park Y, Razzari L, Little BE, Chu ST, Morandotti R, et al. On-chip CMOS-compatible all-optical integrator. Nat Commun. 2010;1:29.
|
[9] |
Woods D, Naughton TJ. Optical computing: photonic neural networks. Nat Phys. 2012;8:257.
|
[10] |
Brunner D, Soriano MC, Mirasso CR, Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun. 2013;4:1364.
|
[11] |
Momeni A, Rajabalipanah H, Abdolali A, Achouri K. Generalized optical signal processing based on multioperator Metasurfaces synthesized by susceptibility tensors. Phys Rev Appl. 2019;11:064042.
|
[12] |
Clymer AB. The mechanical analog computers of Hannibal ford and William Newell. IEEE Annals Hist Comput. 1993;15:19–34.
|
[13] |
Price DDS. A history of calculating machines. IEEE Micro. 1984;4:22–52.
|
[14] |
Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N. Performing mathematical operations with metamaterials. Science. 2014;343:160–3.
|
[15] |
Yu N, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7.
|
[16] |
Pors A, Nielsen MG, Bozhevolnyi SI. Analog computing using reflective plasmonic metasurfaces. Nano Lett. 2014;15:791–7.
|
[17] |
Chizari A, Abdollahramezani S, Jamali MV, Salehi JA. Analog optical computing based on a dielectric meta-reflect array. Opt Lett. 2016;41:3451–4.
|
[18] |
Kwon H, Sounas D, Cordaro A, Polman A, Alù A. Nonlocal metasurfaces for optical signal processing. Phys Rev Lett. 2018;121:173004.
|
[19] |
Estakhri NM, Edwards B, Engheta N. Inverse-designed metastructures that solve equations. Science. 2019;363:1333–8.
|
[20] |
Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur SN, et al. Ultrathin Pancharatnam-berry metasurface with maximal cross-efficiency. Adv Mater. 2015;27:1195–200.
|
[21] |
Xu HX, Hu G, Han L, Jiang M, Huang Y, Li Y, et al. Chirality-assisted high-efficiency Metasurfaces with independent control of phase, amplitude, and polarization. Adv Opt Mater. 2019;7:1801479.
|
[22] |
Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett. 2013;110:197401.
|
[23] |
Pfeiffer C, Emani NK, Shaltout AM, Boltasseva A, Shalaev VM, Grbic A. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett. 2014;14:2491–7.
|
[24] |
Epstein A, Eleftheriades GV. Passive lossless Huygens metasurfaces for conversion of arbitrary source field to directive radiation. IEEE trans. Antennas Propag. 2014;62:5680–95.
|
[25] |
Wang Z, Ding X, Zhang K, Wu Q. Spacial energy distribution manipulation with multi-focus Huygens metamirror. Sci Rep. 2017;7:9081.
|
[26] |
Epstein A, Wong JP, Eleftheriades GV. Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures. Nat Commun. 2016;7:10360.
|
[27] |
Jin C, Afsharnia M, Berlich R, Fasold S, Zou C, Arslan D, et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging. Adv Photon. 2019;1:036001.
|
[28] |
Cui TJ, Liu S, Li LL. Information entropy of coding metasurface. Light: Sci Appl. 2016;5:e16172.
|
[29] |
Wan X, Qi MQ, Chen TY, Cui TJ. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Sci Rep. 2016;6:20663.
|
[30] |
Liu S, Cui TJ, Zhang L, Xu Q, Wang Q, Wan X, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams. Adv Sci. 2016;3:1600156.
|
[31] |
Zhu BO, Feng Y. Passive metasurface for reflectionless and arbitary control of electromagnetic wave transmission. IEEE Trans Antennas Propag. 2015;63:5500–11.
|
[32] |
Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech. 1999;47:2075–84.
|
[33] |
Schurig D, Mock JJ, Smith DR. Electric-field-coupled resonators for negative permittivity metamaterials. Appl Phys Lett. 2006;88:041109.
|
[34] |
Wang Z, Ding X, Zhang K, Ratni B, Burokur SN, Gu X, et al. Huygens metasurface holograms with the modulation of focal energy distribution. Adv Opt Mater. 2018;6:1800121.
|
[35] |
Li X, Ren H, Chen X, Liu J, Li Q, Li C, et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun. 2015;6:6984.
|
[36] |
Reddy BS, Chatterji BN. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans Image Process. 1996;5:1266–71.
|
[37] |
Chong KE, Wang L, Staude I, James AR, Dominguez J, Liu S, et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms. ACS Photonics. 2016;3:514–9.
|
[38] |
Wang L, Kruk S, Tang H, Li T, Kravchenko I, Neshev DN, et al. Grayscale transparent metasurface holograms. Optica. 2016;3:1504–5.
|
[39] |
Zhao W, Jiang H, Liu B, Song J, Jiang Y, Tang C, et al. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci Rep. 2016;6:30613.
|
[40] |
Ee HS, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 2016;16:2818–23.
|
[41] |
Malek SC, Ee HS, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 2017;17:3641–5.
|
[42] |
AbdollahRamezani S, Arik K, Khavasi A, Kavehvash Z. Analog computing using graphene-based metalines. Opt Lett. 2015;40:5239–42.
|
[43] |
Doskolovich LL, Bykov DA, Bezus EA, Soifer VA. Spatial differentiation of optical beams using phase-shifted Bragg grating. Opt Lett. 2014;39:1278–81.
|
[44] |
Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, et al. A reconfigurable active huygens’ metalens. Adv Mater. 2017;29:1606422.
|
[45] |
Jang J, Jeong H, Hu G, Qiu CW, Nam KT, Rho J. Kerker-conditioned dynamic cryptographic Nanoprints. Adv Opt Mater. 2019;7:1801070.
|
[46] |
Chen K, Ding G, Hu G, Jin Z, Zhao J, Feng Y, et al. Directional Janus Metasurface. Adv Mater. 2020;32:1906352.
|