Raman tensor of layered black phosphorus
-
摘要: Black phosphorus has a strong Raman anisotropy on the basal and cross planes due to its orthorhombic crystal structure. However, almost all the studies on black phosphorus' anisotropy focus on basal plane with the cross plane neglected. Here, we performed a systematic angle-resolved polarized Raman scattering on both the basal and cross planes of black phosphorus and obtained its integral Raman tensors. It is discovered that when the polarization direction of excitation light is along different crystal axes, the Raman intensity ratio (Ixx:Iyy:Izz) of Ag1 mode is 256:1:5. Besides, via calculation, it is confirmed that the strong Raman anisotropy mainly comes from different differential polarizability alone different directions. This phenomenon is also observed when it comes to the Ag2 mode.
-
关键词:
Abstract: Black phosphorus has a strong Raman anisotropy on the basal and cross planes due to its orthorhombic crystal structure. However, almost all the studies on black phosphorus’ anisotropy focus on basal plane with the cross plane neglected. Here, we performed a systematic angle-resolved polarized Raman scattering on both the basal and cross planes of black phosphorus and obtained its integral Raman tensors. It is discovered that when the polarization direction of excitation light is along different crystal axes, the Raman intensity ratio (Ixx : Iyy: Izz) of $ {A}_g^1 $ mode is 256:1:5. Besides, via calculation, it is confirmed that the strong Raman anisotropy mainly comes from different differential polarizability alone different directions. This phenomenon is also observed when it comes to the $ {A}_g^2 $ mode.-
Key words:
- Black phosphorus /
- Polarized Raman spectrum /
- Differential polarizability /
- Raman tensor
-
[1] Zheng W, Li F, Li G, Liang Y, Ji X, Yang F, Zhang Z, Huang F. Laser Tuning in van der Waals Crystals. ACS Nano. 2018;12:2001–7. [2] Zheng W, Yan J, Li F, Huang F. Elucidation of "phase difference" in Raman tensor formalism. Photon Res. 2018;6:709–12. [3] Chen Y, Chen C, Kealhofer R, Liu H, Yuan Z, Jiang L, Suh J, Park J, Ko C, Choe HS, Avila J, Zhong M, Wei Z, Li J, Li S, Gao H, Liu Y, Analytis J, Xia Q, Asensio MC, Wu J. Black arsenic: a layered semiconductor with extreme in-plane anisotropy. Adv Mater. 2018;30:1800754. [4] Chenet DA, Aslan OB, Huang PY, Fan C, van der Zande AM, Heinz TF, Hone JC. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission Electron microscopy. Nano Lett. 2015;15:5667–72. [5] Yao Y, Zhang Y, Xiong W, Wang Z, Sendeku MG, Li N, Wang J, Huang W, Wang F, Zhan X, Yuan S, Jiang C, Xia C, He J. Growth and Raman scattering investigation of a new 2D MOX material: YbOCl. Adv Funct Mater. 2019;29:1903017. [6] Zhong X, Lee K, Meggiolaro D, Dismukes AH, Choi B, Wang F, Nuckolls C, Paley DW, Batail P, De Angelis F, Roy X, Zhu X-Y. Mo6S3Br6: an anisotropic 2D Superatomic semiconductor. Adv Funct Mater. 2019;29:1902951. [7] Huang S, Tatsumi Y, Ling X, Guo H, Wang Z, Watson G, Puretzky AA, Geohegan DB, Kong J, Li J, Yang T, Saito R, Dresselhaus MS. In-plane optical anisotropy of layered gallium telluride. ACS Nano. 2016;10:8964–72. [8] Khandelwal A, Mani K, Karigerasi MH, Lahiri I. Phosphorene – the two-dimensional black phosphorous: properties, synthesis and applications. Mater Sci Eng B. 2017;221:17–34. [9] Gupta A, Sakthivel T, Seal S. Recent development in 2D materials beyond graphene. Prog Mater Sci. 2015;73:44–126. [10] Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9:372. [11] Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B. 2014;89:235319. [12] Cardona M. Resonance phenomena. In: Light Scattering in Solids II: Basic Concepts and Instrumentation (eds Cardona M, Güntherodt G). Springer Berlin Heidelberg (1982). [13] Loudon R. The Raman effect in crystals. Adv Phys. 2001;50:813–64. [14] Raman CV. A new radiation. Indian J Phys. 1928;2:387–98. [15] Zheng W, Zheng RS, Wu HL, Li FD. Strongly anisotropic behavior of A1(TO) phonon mode in bulk AlN. J Alloy Compd. 2014;584:374–6. [16] Zheng W, Zheng R, Huang F, Wu H, Li F. Raman tensor of AlN bulk single crystal. Photon Res. 2015;3:38–43. [17] Zheng W, Zhu Y, Li F, Huang F. Raman spectroscopy regulation in van der Waals crystals. Photon Res. 2018;6:991–5. [18] Ding Y, Zheng W, Lin Z, Zhu R, Jin M, Zhu Y, Huang F. Raman tensor of layered WS2. Sci China Mater. 2020. https://doi.org/10.1007/s40843-020-1321-4. [19] Ding Y, Zheng W, Jin M, Zhu Y, Zhu R, Lin Z, Huang F. Raman tensor of layered MoS2. Opt Lett. 2020;45:1313–6. [20] Jin M, Zheng W, Ding Y, Zhu Y, Wang W, Huang F. Raman Tensor of van der Waals MoSe2. J Phys Chem Lett. 2020;11:4311–6. [21] Jin M, Zheng W, Ding Y, Zhu Y, Wang W, Huang F. Raman tensor of WSe2 via angle-resolved polarized Raman spectroscopy. J Phys Chem C. 2019;123:29337–42. [22] Ribeiro HB, Pimenta MA, de Matos CJS, Moreira RL, Rodin AS, Zapata JD, de Souza EAT, Castro Neto AH. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano. 2015;9:4270–6. [23] Ribeiro HB, Pimenta MA, de Matos CJS. Raman spectroscopy in black phosphorus. J Raman Spectrosc. 2018;49:76–90. [24] Wang T, Liu J, Xu B, Wang R, Yuan P, Han M, Xu S, Xie Y, Wu Y, Wang X. Identifying the crystalline orientation of black phosphorus by using Optothermal Raman spectroscopy. ChemPhysChem. 2017;18:2828–34. [25] Wu J, Mao N, Xie L, Xu H, Zhang J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew Chem. 2015;127:2396–9. [26] Ling X, Huang S, Hasdeo EH, Liang L, Parkin WM, Tatsumi Y, Nugraha ART, Puretzky AA, Das PM, Sumpter BG, Geohegan DB, Kong J, Saito R, Drndic M, Meunier V, Dresselhaus MS. Anisotropic Electron-photon and Electron-phonon interactions in black phosphorus. Nano Lett. 2016;16:2260–7. [27] Mao N, Wu J, Han B, Lin J, Tong L, Zhang J. Birefringence-directed Raman selection rules in 2D black phosphorus crystals. Small. 2016;12:2627–33. [28] Ribeiro HB, Villegas CEP, Bahamon DA, Muraca D, Castro Neto AH, de Souza EAT, Rocha AR, Pimenta MA, de Matos CJS. Edge phonons in black phosphorus. Nat Commun. 2016;7:12191. [29] Tóbik J, Tosatti E. Raman tensor calculation for magnesium phthalocyanine. Surf Sci. 2006;600:3995–8. [30] Zvereva EE, Shagidullin AR, Katsyuba SA. Ab initio and DFT predictions of infrared intensities and Raman activities. J Phys Chem A. 2011;115:63–9. [31] Saboori S, Deng Z, Li Z, Wang W, She J. β-As monolayer: vibrational properties and Raman spectra. ACS Omega. 2019;4:10171–5. [32] Irmer G, Röder C, Himcinschi C, Kortus J. Raman tensor elements and Faust-Henry coefficients of wurtzite-type α-GaN: how to overcome the dilemma of the sign of Faust-Henry coefficients in α-GaN? J Appl Phys. 2014;116:245702. [33] Blöchl P. Projector Agmented-Wave Method Phys Rev B 1994;50:17953–17979. [34] Hohenberg P, Kohn W. Inhomogeneous Electron gas. Phys Rev. 1964;136:B864. [35] Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys Rev B. 1999;59:1758. [36] Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133–8. [37] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–86. [38] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci. 1996;6:15–50. [39] Monkhorst HJ, Pack JD. On special points for Brillouin zone integrations. Phys Rev B. 1976;13:5188–92. [40] Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett. 1996;77:3865–8. [41] Kranert C, Sturm C, Schmidt-Grund R, Grundmann M. Raman tensor formalism for optically anisotropic crystals. Phys Rev Lett. 2016;116:127401. [42] Kranert C, Sturm C, Schmidt-Grund R, Grundmann M. Raman tensor elements of β-Ga2O3. Sci Rep. 2016;6:35964. [43] Sander T, Eisermann S, Meyer BK, Klar PJ. Raman tensor elements of wurtzite ZnO. Phys Rev B. 2012;85:165208. [44] Strach T, Brunen J, Lederle B, Zegenhagen J, Cardona M. Determination of the phase difference between the Raman tensor elements of the A1g-like phonons in SmBa2Cu3O7−δ. Phys Rev B. 1998;57:1292–7.
点击查看大图
计量
- 文章访问数: 114
- HTML全文浏览量: 0
- PDF下载量: 31
- 被引次数: 0