Recent advances in multi-dimensional metasurfaces holographic technologies
doi: 10.1186/s43074-020-00020-y
Recent advances in multi-dimensional metasurfaces holographic technologies
-
摘要: Holography has attracted tremendous interest due to its capability of storing both the amplitude and phase of light field and reproducing vivid three-dimensional scenes. However, the large pixel size, low resolution, small field-of-view (FOV) and limited space-bandwidth of traditional spatial light modulator (SLM) devices restrict the possibility of improving the quality of reconstructed images. With the development of nanofabrication technologies, metasurfaces have shown great potential in manipulating the amplitude, phase, polarization, frequency or simultaneously multiple parameters of output light in ultrashort distance with subwavelength resolution by tailoring the scattering behaviour of consisted nanostructures. Such flexibilities make metasurface a promising candidate for holographic related applications. Here, we review recent progresses in the field of metasurface holography. From the perspective of the fundamental properties of light, we classify the metasurface holography into several categories such as phaseonly holography, amplitude-only holography, complex amplitude holography and so on. Then, we introduce the corresponding working principles and design strategies. Meanwhile, some emerging types of metasurface holography such as tunable holography, nonlinear holography, Janus (or directional related) and bilayer metasurfaces holography are also discussed. At last, we make our outlook on metasurface holography and discuss the challenges we may face in the future.
-
关键词:
Abstract: Holography has attracted tremendous interest due to its capability of storing both the amplitude and phase of light field and reproducing vivid three-dimensional scenes. However, the large pixel size, low resolution, small field-of-view (FOV) and limited space-bandwidth of traditional spatial light modulator (SLM) devices restrict the possibility of improving the quality of reconstructed images. With the development of nanofabrication technologies, metasurfaces have shown great potential in manipulating the amplitude, phase, polarization, frequency or simultaneously multiple parameters of output light in ultrashort distance with subwavelength resolution by tailoring the scattering behaviour of consisted nanostructures. Such flexibilities make metasurface a promising candidate for holographic related applications. Here, we review recent progresses in the field of metasurface holography. From the perspective of the fundamental properties of light, we classify the metasurface holography into several categories such as phase-only holography, amplitude-only holography, complex amplitude holography and so on. Then, we introduce the corresponding working principles and design strategies. Meanwhile, some emerging types of metasurface holography such as tunable holography, nonlinear holography, Janus (or directional related) and bilayer metasurfaces holography are also discussed. At last, we make our outlook on metasurface holography and discuss the challenges we may face in the future.-
Key words:
- Metasurface /
- Holography /
- Wavefront modulation
-
[1] Gabor D. A new microscopic principle. Nature. 1948;161:777–8. [2] Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt. 1966;5:967–9. [3] Gabor D. Holography, 1948-1971. Proc IEEE. 1972;60:655–68. [4] Fukushima S, Kurokawa T, Ohno M. Real-time hologram construction and reconstruction using a high-resolution spatial light-modulator. Appl Phys Lett. 1991;58:787–9. [5] Jiang Q, Jin G, Cao L. When metasurface meets hologram: principle and advances. Adv Opt Photon. 2019;11:518. [6] Sung J, Lee G-Y, Lee B. Progresses in the practical metasurface for holography and lens. Nanophotonics. 2019;8:1701–18. [7] Huang L, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics. 2018;7:1169–90. [8] Lee GY, Sung J, Lee B. Recent advances in metasurface hologram technologies (invited paper). ETRI J. 2019;41:10–22. [9] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress. Rep Prog Phys. 2015;78:024401. [10] Xu Z, Huang L, Li X, Tang C, Wei Q, Wang Y. Quantitatively correlated amplitude holography based on photon sieves. Adv Opt Mater. 2019;8:1901169. [11] Huang K, Liu H, Garcia-Vidal FJ, Hong M, Luk’yanchuk B, Teng J, Qiu C-W. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun. 2015;6:7059. [12] Li J, Zhang Y, Li J, Yan X, Liang L, Zhang Z, Huang J, Li J, Yang Y, Yao J. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam–berry coding metasurfaces. Nanoscale. 2019;11:5746–53. [13] Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334:333–7. [14] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat Mater. 2012;11:426–31. [15] Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Zentgraf T, Zhang S. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 2012;12:5750–5. [16] Kang M, Feng T, Wang H-T, Li J. Wave front engineering from an array of thin aperture antennas. Opt Express. 2012;20:15882–90. [17] Decker M, Staude I, Falkner M, Dominguez J, Neshev DN, Brener I, Pertsch T, Kivshar YS. High-efficiency dielectric Huygens’ surfaces. Adv Opt Mater. 2015;3:813–20. [18] Li G, Chen S, Pholchai N, Reineke B, Wong PWH, Pun EYB, Cheah KW, Zentgraf T, Zhang S. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater. 2015;14:607–12. [19] Ye W, Zeuner F, Li X, Reineke B, He S, Qiu C-W, Liu J, Wang Y, Zhang S, Zentgraf T. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun. 2016;7:11930. [20] Aieta F, Genevet P, Kats MA, Yu N, Blanchard R, Gaburro Z, Capasso F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012;12:4932–6. [21] Kruk S, Hopkins B, Kravchenko II, Miroshnichenko A, Neshev DN, Kivshar YS. Invited article: broadband highly efficient dielectric metadevices for polarization control. APL Photonics. 2016;1:030801. [22] Li T, Huang L, Liu J, Wang Y, Zentgraf T. Tunable wave plate based on active plasmonic metasurfaces. Opt Express. 2017;25:4216–26. [23] Shalaev MI, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser NM. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett. 2015;15:6261–6. [24] Devlin RC, Ambrosio A, Rubin NA, Mueller JB, Capasso F. Arbitrary spin-to–orbital angular momentum conversion of light. Science. 2017;358:896–901. [25] Sroor H, Huang Y-W, Sephton B, Naidoo D, Vallés A, Ginis V, Qiu C-W, Ambrosio A, Capasso F, Forbes A. High-purity orbital angular momentum states from a visible metasurface laser. Nat Photonics. 2020;14:498–503. [26] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol. 2015;10:937–43. [27] Mueller JB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett. 2017;118:113901. [28] Deng Z-L, Deng J, Zhuang X, Wang S, Li K, Wang Y, Chi Y, Ye X, Xu J, Wang GP. Diatomic metasurface for vectorial holography. Nano Lett. 2018;18:2885–92. [29] Deng ZL, Jin M, Ye X, Wang S, Shi T, Deng J, Mao N, Cao Y, Guan BO, Alù A. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv Funct Mater. 2020;30:1910610. [30] Bao Y, Ni J, Qiu CW. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv Mater. 2020;32:1905659. [31] Chen WT, Khorasaninejad M, Zhu AY, Oh J, Devlin RC, Zaidi A, Capasso F. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci Appl. 2017;6:e16259–e59. [32] Yue F, Wen D, Xin J, Gerardot BD, Li J, Chen X. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics. 2016;3:1558–63. [33] Song X, Huang L, Sun L, Zhang X, Zhao R, Li X, Wang J, Bai B, Wang Y. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface. Appl Phys Lett. 2018;112:073104. [34] Lin Z, Li X, Zhao R, Song X, Wang Y, Huang L. High-efficiency Bessel beam array generation by Huygens metasurfaces. Nanophotonics. 2019;8:1079–85. [35] Chen X, Huang L, Mühlenbernd H, Li G, Bai B, Tan Q, Jin G, Qiu C-W, Zhang S, Zentgraf T. Dual-polarity plasmonic metalens for visible light. Nat Commun. 2012;3:1198. [36] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352:1190–4. [37] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018;13:220–6. [38] Wang S, Wu PC, Su V-C, Lai Y-C, Chen M-K, Kuo HY, Chen BH, Chen YH, Huang T-T, Wang J-H. A broadband achromatic metalens in the visible. Nat Nanotechnol. 2018;13:227–32. [39] Shrestha S, Overvig AC, Lu M, Stein A, Yu N. Broadband achromatic dielectric metalenses. Light Sci Appl. 2018;7:1–11. [40] Wang Z, Jia H, Yao K, Cai W, Chen H, Liu Y. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics. 2016;3:2096–101. [41] Zhu AY, Chen WT, Zaidi A, Huang Y-W, Khorasaninejad M, Sanjeev V, Qiu C-W, Capasso F. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci Appl. 2018;7:17158. [42] Camacho-Morales R, Rahmani M, Kruk S, Wang L, Xu L, Smirnova DA, Solntsev AS, Miroshnichenko A, Tan HH, Karouta F. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett. 2016;16:7191–7. [43] Yang Y, Wang W, Boulesbaa A, Kravchenko II, Briggs DP, Puretzky A, Geohegan D, Valentine J. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 2015;15:7388–93. [44] Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu S-T, Chanda D. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces. Nat Commun. 2015;6:7337. [45] Duan X, Kamin S, Liu N. Dynamic plasmonic colour display. Nat Commun. 2017;8:14606. [46] Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K-W, Qiu C-W. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun. 2013;4:2808. [47] Zheng G, Mühlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10:308–12. [48] Huang L, Mühlenbernd H, Li X, Song X, Bai B, Wang Y, Zentgraf T. Broadband hybrid holographic multiplexing with geometric metasurfaces. Adv Mater. 2015;27:6444–9. [49] Wei Q, Huang L, Li X, Liu J, Wang Y. Broadband multiplane holography based on plasmonic metasurface. Adv Opt Mater. 2017;5:1700434. [50] Kim I, Yoon G, Jang J, Genevet P, Nam KT, Rho J. Outfitting next generation displays with optical metasurfaces. ACS Photonics. 2018;5:3876–95. [51] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–50. [52] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339:1232009. [53] Lin D, Fan P, Hasman E, Brongersma ML. Dielectric gradient metasurface optical elements. Science. 2014;345:298–302. [54] Wang L, Kruk S, Tang H, Li T, Kravchenko I, Neshev DN, Kivshar YS. Grayscale transparent metasurface holograms. Optica. 2016;3:1504–5. [55] Devlin RC, Khorasaninejad M, Chen WT, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci. 2016;113:10473–8. [56] Jahani S, Jacob Z. All-dielectric metamaterials. Nat Nanotechnol. 2016;11:23–36. [57] Butt H, Montelongo Y, Butler T, Rajesekharan R, Dai Q, Shiva-Reddy SG, Wilkinson TD, Amaratunga GA. Carbon nanotube based high resolution holograms. Adv Mater. 2012;24:OP331–OP36. [58] Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F, Kley EB, Lederer F, Tünnermann A, Pertsch T. Spatial and spectral light shaping with metamaterials. Adv Mater. 2012;24:6300–4. [59] Lee G-Y, Yoon G, Lee S-Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale. 2018;10:4237–45. [60] Overvig AC, Shrestha S, Malek SC, Lu M, Stein A, Zheng C, Yu N. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl. 2019;8:92. [61] Ni X, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun. 2013;4:2807. [62] Wang Q, Zhang X, Xu Y, Gu J, Li Y, Tian Z, Singh R, Zhang S, Han J, Zhang W. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep. 2016;6:32867. [63] Huang Y-W, Chen WT, Tsai W-Y, Wu PC, Wang C-M, Sun G, Tsai DP. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 2015;15:3122–7. [64] Wang B, Dong F, Li Q-T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y-F. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 2016;16:5235–40. [65] Jin L, Dong Z, Mei S, Yu YF, Wei Z, Pan Z, Rezaei SD, Li X, Kuznetsov AI, Kivshar YS. Noninterleaved metasurface for (26-1) spin-and wavelength-encoded holograms. Nano Lett. 2018;18:8016–24. [66] Li X, Chen L, Li Y, Zhang X, Pu M, Zhao Z, Ma X, Wang Y, Hong M, Luo X. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv. 2016;2:e1601102. [67] Wang B, Dong F, Yang D, Song Z, Xu L, Chu W, Gong Q, Li Y. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica. 2017;4:1368–71. [68] Hu Y, Li L, Wang Y, Meng M, Jin L, Luo X, Chen Y, Li X, Xiao S, Wang H. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett. 2019;20:994–1002. [69] Hu Y, Wang X, Luo X, Ou X, Li L, Chen Y, Yang P, Wang S, Duan H. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics. 2020:20200220. [70] Intaravanne Y, Chen X. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles. Nanophotonics. 2020;9:1003. [71] Montelongo Y, Tenorio-Pearl JO, Milne WI, Wilkinson TD. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Lett. 2014;14:294–8. [72] Wen D, Yue F, Li G, Zheng G, Chan K, Chen S, Chen M, Li KF, Wong PWH, Cheah KW. Helicity multiplexed broadband metasurface holograms. Nat Commun. 2015;6:8241. [73] Zhao R, Sain B, Wei Q, Tang C, Li X, Weiss T, Huang L, Wang Y, Zentgraf T. Multichannel vectorial holographic display and encryption. Light Sci Appl. 2018;7:95. [74] Arbabi E, Kamali SM, Arbabi A, Faraon A. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics. 2019;6:2712–8. [75] Wu J, Wang Z, Fang Z, Liang J, Fu X, Liu J, Wu H, Bao D, Miao L, Zhou X, Cheng Q, Cui T. Full-state synthesis of electromagnetic fields using high efficiency phase-only metasurfaces. Adv Funct Mater. 2020:2004144. [76] Song Q, Baroni A, Sawant R, Ni P, Brandli V, Chenot S, Vézian S, Damilano B, de Mierry P, Khadir S. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat Commun. 2020;11:2651. [77] Ren H, Shao W, Li Y, Salim F, Gu M. Three-dimensional vectorial holography based on machine learning inverse design. Sci Adv. 2020;6:eaaz4261. [78] Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraji-Dana M, Faraon A. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys Rev X. 2017;7:041056. [79] Bao Y, Yu Y, Xu H, Lin Q, Wang Y, Li J, Zhou ZK, Wang XH. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding. Adv Funct Mater. 2018;28:1805306. [80] Wang E, Niu J, Liang Y, Li H, Hua Y, Shi L, Xie C. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields. Adv Opt Mater. 2020;8:1901674. [81] Wang J, Yang J-Y, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6:488–96. [82] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci Appl. 2019;8:90. [83] Ren H, Briere G, Fang X, Ni P, Sawant R, Héron S, Chenot S, Vézian S, Damilano B, Brändli V. Metasurface orbital angular momentum holography. Nat Commun. 2019;10:2986. [84] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics. 2020;14:102–8. [85] Jin L, Huang Y-W, Jin Z, Devlin RC, Dong Z, Mei S, Jiang M, Chen WT, Wei Z, Liu H. Dielectric multi-momentum meta-transformer in the visible. Nat Commun. 2019;10:4789. [86] Zhou H, Sain B, Wang Y, Schlickriede C, Zhao R, Zhang X, Wei Q, Li X, Huang L, Zentgraf T. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano. 2020;14:5553–9. [87] Lim KT, Liu H, Liu Y, Yang JK. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat Commun. 2019;10:25. [88] Wei Q, Sain B, Wang Y, Reineke B, Li X, Huang L, Zentgraf T. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett. 2019;19:8964–71. [89] Bao Y, Yu Y, Xu H, Guo C, Li J, Sun S, Zhou Z-K, Qiu C-W, Wang X-H. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl. 2019;8:95. [90] Hu Y, Luo X, Chen Y, Liu Q, Li X, Wang Y, Liu N, Duan H. 3D-integrated metasurfaces for full-colour holography. Light Sci Appl. 2019;8:86. [91] Li L, Cui TJ, Ji W, Liu S, Ding J, Wan X, Li YB, Jiang M, Qiu C-W, Zhang S. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun. 2017;8:197. [92] Zhang X, Jiang W, Jiang H, Wang Q, Tian H, Bai L, Luo Z, Sun S, Luo Y, Qiu C-W. An optically driven digital metasurface for programming electromagnetic functions. Nat Electron. 2020;3:165–71. [93] Zhang L, Chen X, Liu S, Zhang Q, Zhao J, Dai J, Bai G, Wan X, Cheng Q, Castaldi G. Space-time-coding digital metasurfaces. Nat Commun. 2018;9:4334. [94] Zhang M, Pu M, Zhang F, Guo Y, He Q, Ma X, Huang Y, Li X, Yu H, Luo X. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials. Adv Sci. 2018;5:1800835. [95] Malek SC, Ee H-S, Agarwal R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 2017;17:3641–5. [96] Li J, Kamin S, Zheng G, Neubrech F, Zhang S, Liu N. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv. 2018;4:eaar6768. [97] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater. 2007;6:824–32. [98] Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev. 2017;11:1700091. [99] Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials. 2017;10:1046. [100] Gao Y, Fan Y, Wang Y, Yang W, Song Q, Xiao S. Nonlinear holographic all-dielectric metasurfaces. Nano Lett. 2018;18:8054–61. [101] Reineke B, Sain B, Zhao R, Carletti L, Liu B, Huang L, De Angelis C, Zentgraf T. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Lett. 2019;19:6585–91. [102] Schlickriede C, Waterman N, Reineke B, Georgi P, Li G, Zhang S, Zentgraf T. Imaging through nonlinear metalens using second harmonic generation. Adv Mater. 2018;30:1703843. [103] Schlickriede C, Kruk SS, Wang L, Sain B, Kivshar Y, Zentgraf T. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett. 2020;20:4370–6. [104] Wang L, Kruk S, Koshelev K, Kravchenko I, Luther-Davies B, Kivshar Y. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett. 2018;18:3978–84. [105] Li G, Wu L, Li KF, Chen S, Schlickriede C, Xu Z, Huang S, Li W, Liu Y, Pun EY. Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation. Nano Lett. 2017;17:7974–9. [106] Hu G, Hong X, Wang K, Wu J, Xu H-X, Zhao W, Liu W, Zhang S, Garcia-Vidal F, Wang B. Coherent steering of nonlinear chiral valley photons with a synthetic au–WS2 metasurface. Nat Photonics. 2019;13:467–72. [107] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun. 2016;7:12533. [108] Lin Z, Huang L, Xu ZT, Li X, Zentgraf T, Wang Y. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces. Adv Opt Mater. 2019;7:1900782. [109] Hong X, Hu G, Zhao W, Wang K, Sun S, Zhu R, Wu J, Liu W, Loh KP, Wee ATS. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides. Research. 2020;2020:9085782. [110] Chen Y, Yang X, Gao J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci Appl. 2019;8:45. [111] Chen K, Ding G, Hu G, Jin Z, Zhao J, Feng Y, Jiang T, Alù A, Qiu CW. Directional janus metasurface. Adv Mater. 2019;32:1906352. [112] Frese D, Wei Q, Wang Y, Huang L, Zentgraf T. Nonreciprocal asymmetric polarization encryption by layered plasmonic metasurfaces. Nano Lett. 2019;19:3976–80. [113] Zhou Y, Kravchenko II, Wang H, Zheng H, Gu G, Valentine J. Multifunctional metaoptics based on bilayer metasurfaces. Light Sci Appl. 2019;8:80. [114] Molesky S, Lin Z, Piggott AY, Jin W, Vucković J, Rodriguez AW. Inverse design in nanophotonics. Nat Photonics. 2018;12:659–70. [115] Lin Z, Groever B, Capasso F, Rodriguez AW, Lončar M. Topology-optimized multilayered metaoptics. Phys Rev Appl. 2018;9:044030. [116] Ma W, Cheng F, Liu Y. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano. 2018;12:6326–34. [117] Liu Z, Zhu D, Rodrigues SP, Lee K-T, Cai W. Generative model for the inverse design of metasurfaces. Nano Lett. 2018;18:6570–6. [118] Gao H, Wang Y, Fan X, Jiao B, Li T, Shang C, Zeng C, Deng L, Xiong W, Xia J. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci Adv. 2020;6:eaba8595. [119] Faraji-Dana M, Arbabi E, Arbabi A, Kamali SM, Kwon H, Faraon A. Compact folded metasurface spectrometer. Nat Commun. 2018;9:4196. [120] Rubin NA, D’Aversa G, Chevalier P, Shi Z, Chen WT, Capasso F. Matrix fourier optics enables a compact full-stokes polarization camera. Science. 2019;365:eaax1839. [121] Kwon H, Arbabi E, Kamali SM, Faraji-Dana M, Faraon A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat Photonics. 2020;14:109–14. [122] Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, Deng J, Li K, Yang J, Holynski M. A dielectric metasurface optical chip for the generation of cold atoms. Sci Adv. 2020;6:eabb6667.
点击查看大图
计量
- 文章访问数: 368
- HTML全文浏览量: 11
- PDF下载量: 33
- 被引次数: 0