Nonlinear meta-optics towards applications
-
摘要: Nonlinear optical effects have enabled numerous applications such as laser frequency conversion, ultrafast electro-optical, and all-optical modulation. Both gaseous and bulk media have conventionally been used for free-space nonlinear optical applications, yet they often require complex phase-matching techniques for efficient operation and may have limited operation bandwidth due to the material absorption. In the last decade, meta-optics made of subwavelength antennas or films have emerged as novel nonlinear optical media that may potentially overcome certain limitations of bulk crystals. Due to resonant enhancements of the pump laser field as well as the use of materials with extreme nonlinearity such as epsilon-nearzero materials, meta-optics can achieve strong nonlinear responses with a subwavelength thickness. Here, we review several nonlinear optical applications, such as electric-field-induced second-harmonic generation, entangled photon pair generation, terahertz generation, all-optical modulation, and high-harmonic generation that we envision meta-optics may have distinct advantages over their bulk counterparts. We outline the challenges still faced by nonlinear meta-optics and point out some potential directions.
-
关键词:
Abstract: Nonlinear optical effects have enabled numerous applications such as laser frequency conversion, ultrafast electro-optical, and all-optical modulation. Both gaseous and bulk media have conventionally been used for free-space nonlinear optical applications, yet they often require complex phase-matching techniques for efficient operation and may have limited operation bandwidth due to the material absorption. In the last decade, meta-optics made of subwavelength antennas or films have emerged as novel nonlinear optical media that may potentially overcome certain limitations of bulk crystals. Due to resonant enhancements of the pump laser field as well as the use of materials with extreme nonlinearity such as epsilon-near-zero materials, meta-optics can achieve strong nonlinear responses with a subwavelength thickness. Here, we review several nonlinear optical applications, such as electric-field-induced second-harmonic generation, entangled photon pair generation, terahertz generation, all-optical modulation, and high-harmonic generation that we envision meta-optics may have distinct advantages over their bulk counterparts. We outline the challenges still faced by nonlinear meta-optics and point out some potential directions.-
Key words:
- Meta-optics /
- Nonlinear optics /
- Subwavelength media
-
[1] Franken PA, Hill AE, Peters CW, Weinreich G. Generation of optical harmonics. Phys Rev Lett. 1961;7(4):118–9. [2] Shen YR. The principles of nonlinear optics. New York: Wiley; 1984. [3] Boyd RW. Nonlinear optics. 3rd ed. New York: Academic; 2008. [4] Fejer MM, Magel GA, Jundt DH, Byer RL. Quasi-phase-matched 2nd harmonic-generation-tuning and tolerances. IEEE J Quantum Electron. 1992;28(11):2631–54. [5] Yamada M, Nada N, Saitoh M, Watanabe K. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl Phys Lett. 1993;62(5):435–6. [6] Myers LE, Eckardt RC, Fejer MM, Byer RL, Bosenberg WR, Pierce JW. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J Opt Soc Am B-Opt Phys. 1995;12(11):2102–16. [7] Armstrong JA, Bloembergen N, Ducuing J, Pershan PS. Interactions between light waves in a nonlinear dielectric. Phys Rev. 1962;127(6):1918–39. https://doi.org/10.1103/PhysRev.127.1918. [8] Blanchard F, Sharma G, Razzari L, Ropagnol X, Bandulet H-C, Vidal F, Morandotti R, Kieffer JC, Ozaki T, Tiedje H, Haugen H, Reid M, Hegmann F. Generation of intense terahertz radiation via optical methods. IEEE J Selected Topics Quantum Electron. 2011;17(1):5–16. https://doi.org/10.1109/JSTQE.2010.2047715. [9] Yan H, Chen J. Narrowband polarization entangled paired photons with controllable temporal length. Sci China-Phys Mech Astronomy. 2015;58(7):1–10. [10] Couteau C. Spontaneous parametric down-conversion. Contemp Phys. 2018;59(3):291–304. [11] He R, Lin ZS, Zheng T, Huang H, Chen CT. Energy band gap engineering in borate ultraviolet nonlinear optical crystals: ab initio studies. J Phys-Condens Matter. 2012;24(14):145503. [12] Wu M, Ghimire S, Reis DA, Schafer KJ, Gaarde MB. High-harmonic generation from Bloch electrons in solids. Phys Rev A. 2015;91(4):043839. [13] Ghimire S, Reis DA. High-harmonic generation from solids. Nat Phys. 2019;15(1):10–6. [14] Tani M, Fukasawa R, Abe H, Matsuura S, Sakai K, Nakashima S. Terahertz radiation from coherent phonons excited in semiconductors. J Appl Phys. 1998;83(5):2473–7. [15] Klein MW, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science. 2006;313(5786):502. [16] Aouani H, Rahmani M, Navarro-Cia M, Maier SA. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat Nanotechnol. 2014;9(4):290–4. [17] Celebrano M, Wu X, Baselli M, Grossmann S, Biagioni P, Locatelli A, et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol. 2015;10(5):412–7. https://doi.org/10.1038/nnano.2015.69. [18] O'Brien K, Suchowski H, Rho J, Salandrino A, Kante B, Yin XB, et al. Predicting nonlinear properties of metamaterials from the linear response. Nat Mater. 2015;14(4):379–83. [19] Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics. 2015;9(3):180–4. [20] Palomba S, Zhang S, Park Y, Bartal G, Yin XB, Zhang X. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nat Mater. 2012;11(1):34–8. [21] Ren MX, Plum E, Xu JJ, Zheludev NI. Giant nonlinear optical activity in a plasmonic metamaterial. Nat Commun. 2012;3:833. [22] Lee J, Tymchenko M, Argyropoulos C, Chen PY, Lu F, Demmerle F, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature. 2014;511(7507):65–9. [23] Chong KE, Staude I, James A, Dominguez J, Liu S, Campione S, et al. Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 2015;15(8):5369–74. [24] Li GX, Chen SM, Pholchai N, Reineke B, Wong PWH, Pun EYB, et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater. 2015;14(6):607–12. [25] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun. 2016;7:12533. [26] Li G, Zentgraf T, Zhang S. Rotational doppler effect in nonlinear optics. Nat Phys. 2016;12(8):736–40. [27] Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, Arie A. Nonlinear generation and manipulation of airy beams. Nat Photonics. 2009;3(7):395–8. [28] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013;339(6125):1232009. [29] Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat Photonics. 2014;8(12):889–98. [30] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater. 2014;13(2):139–50. [31] Linden S, Niesler FBP, Forstner J, Grynko Y, Meier T, Wegener M. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys Rev Lett. 2012;109(1):6488–92. [32] Shcherbakov MR, Neshev DN, Hopkins B, Shorokhov AS, Staude I, Melik-Gaykazyan EV, Decker M, Ezhov AA, Miroshnichenko AE, Brener I, Fedyanin AA, Kivshar YS. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 2014;14(11):6488–92. https://doi.org/10.1021/nl503029j. [33] Kruk S, Weismann M, Bykov AY, Mamonov EA, Kolmychek IA, Murzina T, et al. Enhanced magnetic second-harmonic generation from resonant metasurfaces. Acs Photonics. 2015;2(8):1007–12. [34] Yang Y, Wang W, Boulesbaa A, Kravchenko BDP II, Puretzky A, et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 2015;15(11):7388–93. https://doi.org/10.1021/acs.nanolett.5b02802. [35] Konishi K, Higuchi T, Li J, Larsson J, Ishii S, Kuwata-Gonokami M. Polarization-controlled circular second-harmonic generation from metal hole arrays with threefold rotational symmetry. Phys Rev Lett. 2014;112(13):135502. [36] Bomzon Z, Biener G, Kleiner V, Hasman E. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt Lett. 2002;27(13):1141–3. [37] Tymchenko M, Gomez-Diaz JS, Lee J, Nookala N, Belkin MA, Alu A. Gradient nonlinear pancharatnam-berry metasurfaces. Phys Rev Lett. 2015;115(20):207403. [38] Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys Rev Lett. 2006;97(15):157403. [39] Alu A, Silveirinha MG, Salandrino A, Engheta N. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys Rev B. 2007;75(15):155410. [40] Edwards B, Alu A, Young ME, Silveirinha M, Engheta N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys Rev Lett. 2008;100(3):033903. [41] Molesky S, Dewalt CJ, Jacob Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt Express. 2013;21(1):A96–A110. [42] Niu XX, Hu XY, Chu SS, Gong QH. Epsilon-near-zero photonics: a new platform for integrated devices. Adv Opt Mater. 2018;6(10):1701292. [43] Vassant S, Hugonin J-P, Marquier F, Greffet J-J. Berreman mode and epsilon near zero mode. Opt Express. 2012;20(21):23971–7. https://doi.org/10.1364/OE.20.023971. [44] Campione S, Brener I, Marquier F. Theory of epsilon-near-zero modes in ultrathin films. Phys Rev B. 2015;91(12):121408. [45] Jia W, Liu M, Lu Y, Feng X, Wang Q, Zhang X, et al. Broadband terahertz wave generation from an epsilon-near-zero material. Light: Sci Appl. 2021;10(1):11. [46] Liberal I, Engheta N. Near-zero refractive index photonics. Nat Photonics. 2017;11(3):149. [47] Engheta N. Pursuing near-zero response. Science. 2013;340(6130):286. [48] Reshef O, De Leon I, Alam MZ, Boyd RW. Nonlinear optical effects in epsilon-near-zero media. Nat Rev Mater. 2019;4(8):535–51. [49] Kinsey N, DeVault C, Boltasseva A, Shalaev VM. Near-zero-index materials for photonics. Nat Rev Mater. 2019;4(12):742–60. [50] Tian W, Liang F, Chi S, Li C, Yu H, Zhang H, et al. Highly efficient super-continuum generation on an epsilon-near-zero surface. ACS Omega. 2020;5(5):2458–64. [51] Niu X, Hu X, Sun Q, Lu C, Yang Y, Yang H, et al. Polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-near-zero material. Nanophotonics. 2020;9(16):4839–51. [52] Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J. Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics. 2013;7(10):791–5. [53] Capretti A, Wang Y, Engheta N, Dal NL. Comparative study of second-harmonic generation from epsilon-near-zero indium tin oxide and titanium nitride nanolayers excited in the near-infrared spectral range. ACS Photonics. 2015;2(11):1584–91. [54] Capretti A, Wang Y, Engheta N, Dal NL. Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers. Opt Lett. 2015;40(7):1500–3. [55] Luk TS, de Ceglia D, Liu S, Keeler GA, Prasankumar RP, Vincenti MA, et al. Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films. Appl Phys Lett. 2015;106(15):151103. [56] Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016;352(6287):795–7. https://doi.org/10.1126/science.aae0330. [57] Caspani L, Kaipurath RP, Clerici M, Ferrera M, Roger T, Kim J, et al. Enhanced nonlinear refractive index in epsilon-near-zero materials. Phys Rev Lett. 2016;116(23):233901. https://doi.org/10.1103/PhysRevLett.116.233901. [58] Niu X, Hu X, Lu C, Sheng Y, Yang H, Gong Q. Broadband dispersive free, large, and ultrafast nonlinear material platforms for photonics. Nanophotonics. 2020;9(15):4609–18. https://doi.org/10.1515/nanoph-2020-0420. [59] Kuttruff J, Garoli D, Allerbeck J, Krahne R, De Luca A, Brida D, et al. Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities. Commun Phys. 2020;3(1):114. [60] Jiang X, Lu H, Li Q, Zhou H, Zhang S, Zhang H. Epsilon-near-zero medium for optical switches in a monolithic waveguide chip at 1.9 μm. Nanophotonics. 2018;7(11):1835–43. https://doi.org/10.1515/nanoph-2018-0102. [61] Chen P-Y, Argyropoulos C, Alu A. Enhanced nonlinearities using plasmonic nanoantennas. Nanophotonics. 2012;1(3–4):221–33. [62] Kauranen M, Zayats AV. Nonlinear plasmonics. Nat Photonics. 2012;6(11):737–48. https://doi.org/10.1038/nphoton.2012.244. [63] Hou-Tong C, Antoinette JT, Nanfang Y. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016;79(7):076401. [64] Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk'yanchuk B. Optically resonant dielectric nanostructures. Science. 2016;354(6314):2472. [65] Kruk S, Kivshar Y. Functional meta-optics and nanophotonics governed by Mie resonances. ACS Photonics. 2017;4(11):2638–49. https://doi.org/10.1021/acsphotonics.7b01038. [66] Chang S, Guo X, Ni X. Optical metasurfaces: progress and applications. Annu Rev Mater Res. 2018;48(1):279–302. [67] Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater Today. 2018;21(1):8–21. [68] Zou C, Sautter J, Setzpfandt F, Staude I. Resonant dielectric metasurfaces: active tuning and nonlinear effects. J Phys D Appl Phys. 2019;52(37):373002. [69] Pertsch T, Kivshar Y. Nonlinear optics with resonant metasurfaces. MRS Bull. 2020;45(3):210–20. https://doi.org/10.1557/mrs.2020.65. [70] Terhune RW, Maker PD, Savage CM. Optical harmonic generation in calcite. Phys Rev Lett. 1962;8(10):404. [71] Kang L, Cui YH, Lan SF, Rodrigues SP, Brongersma ML, Cai WS. Electrifying photonic metamaterials for tunable nonlinear optics. Nat Commun. 2014;5:4680. [72] Lee K-T, Taghinejad M, Yan J, Kim AS, Raju L, Brown DK, et al. Electrically biased silicon metasurfaces with magnetic Mie sesonance for tunable harmonic generation of light. Acs Photonics. 2019;6(11):2663–70. [73] Chen S, Li KF, Li G, Cheah KW, Zhang S. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect. Light: Sci Appl. 2019;8(1):17. [74] Yap BK, Xia R, Campoy-Quiles M, Stavrinou PN, Bradley DDC. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat Mater. 2008;7(5):376–80. https://doi.org/10.1038/nmat2165. [75] Friberg S, Hong CK, Mandel L. Measurement of time delays in the parametric production of photon pairs. Phys Rev Lett. 1985;54(18):2011–3. [76] Hong CK, Ou ZY, Mandel L. Measurement of subpicosecond time intervals between 2 photons by interference. Phys Rev Lett. 1987;59(18):2044–6. [77] Bocquillon E, Couteau C, Razavi M, Laflamme R, Weihs G. Coherence measures for heralded single-photon sources. Phys Rev A. 2009;79(3):035801. [78] O'Brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photonics. 2009;3(12):687–95. [79] Kwiat PG, Mattle K, Weinfurter H, Zeilinger A, Sergienko AV, Shih Y. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett. 1995;75(24):4337–41. [80] Kwiat PG, Waks E, White AG, Appelbaum I, Eberhard PH. Ultrabright source of polarization-entangled photons. Phys Rev A. 1999;60(2):R773–R6. [81] Kim T, Fiorentino M, Wong FNC. Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Phys Rev A. 2006;73(1):012316. [82] Yin J, Cao Y, Li Y-H, Liao S-K, Zhang L, Ren J-G, et al. Satellite-based entanglement distribution over 1200 kilometers. Science. 2017;356(6343):1180–4. [83] Okoth C, Cavanna A, Santiago-Cruz T, Chekhova MV. Microscale generation of entangled photons without momentum conservation. Phys Rev Lett. 2019;123(26):263602. [84] Marino G, Solntsev AS, Xu L, Gili VF, Carletti L, Poddubny AN, et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica. 2019;6(11):1416–22. [85] Poddubny AN, Iorsh IV, Sukhorukov AA. Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials. Phys Rev Lett. 2016;117(12):123901. [86] Petrov MI, Nikolaeva AA, Frizyuk KS, Olekhno NA. Second harmonic generation and spontaneous parametric down-conversion in Mie nanoresonators. J Phys: Conf Ser. 2018;1124:051021. [87] Song H, Nagatsuma T. Present and future of terahertz communications. IEEE Trans Terahertz Sci Technol. 2011;1(1):256–63. [88] Nagatsuma T, Ducournau G, Renaud CC. Advances in terahertz communications accelerated by photonics. Nat Photonics. 2016;10(6):371–9. [89] Wade CG, Šibalić N, de Melo NR, Kondo JM, Adams CS, Weatherill KJ. Real-time near-field terahertz imaging with atomic optical fluorescence. Nat Photonics. 2017;11(1):40–3. [90] Stantchev RI, Sun B, Hornett SM, Hobson PA, Gibson GM, Padgett MJ, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci Adv. 2016;2(6):e1600190. [91] Mathanker SK, Weckler PR, Wang N. Terahertz (THz) applications in food and agriculture: a review. Trans ASABE. 2013;56(3):1213–26. [92] Federici JF, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, et al. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond Sci Technol. 2005;20(7):S266–S80. [93] Liu J, Dai J, Chin SL, Zhang XC. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat Photonics. 2010;4(9):627–31. [94] Xu W, Xie L, Zhu J, Xu X, Ye Z, Wang C, et al. Gold nanoparticle-based terahertz metamaterial sensors: mechanisms and applications. ACS Photonics. 2016;3(12):2308–14. [95] Nahata A, Weling AS, Heinz TF. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl Phys Lett. 1996;69(16):2321–3. [96] Wu Q, Litz M, Zhang XC. Broadband detection capability of ZnTe electro-optic field detectors. Appl Phys Lett. 1996;68(21):2924–6. [97] Hebling J, Almasi G, Kozma IZ, Kuhl J. Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt Express. 2002;10(21):1161–6. [98] Yeh KL, Hoffmann MC, Hebling J, Nelson KA. Generation of 10 mu J ultrashort terahertz pulses by optical rectification. Appl Phys Lett. 2007;90(17):171121. [99] Luo L, Chatzakis I, Wang J, Niesler FBP, Wegener M, Koschny T, et al. Broadband terahertz generation from metamaterials. Nat Commun. 2014;5(1):3055. [100] Keren-Zur S, Tal M, Fleischer S, Mittleman DM, Ellenbogen T. Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces. Nat Commun. 2019;10(1):1778. [101] Fang M, Shen NH, Sha WEI, Huang Z, Koschny T, Soukoulis CM. Nonlinearity in the dark: broadband terahertz generation with extremely high efficiency. Phys Rev Lett. 2019;122(2):027401. [102] Okawachi Y, Saha K, Levy JS, Wen YH, Lipson M, Gaeta AL. Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett. 2011;36(17):3398–400. [103] Jung H, Xiong C, Fong KY, Zhang X, Tang HX. Optical frequency comb generation from aluminum nitride microring resonator. Opt Lett. 2013;38(15):2810–3. [104] Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017;11(7):441–6. [105] Taghinejad M, Cai WS. All-optical control of light in micro- and nanophotonics. Acs Photonics. 2019;6(5):1082–93. [106] Almeida VR, Barrios CA, Panepucci RR, Lipson M. All-optical control of light on a silicon chip. Nature. 2004;431(7012):1081–4. [107] Pelc JS, Rivoire K, Vo S, Santori C, Fattal DA, Beausoleil RG. Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators. Opt Express. 2014;22(4):3797–810. [108] Shcherbakov MR, Vabishchevich PP, Shorokhov AS, Chong KE, Choi DY, Staude I, Miroshnichenko AE, Neshev DN, Fedyanin AA, Kivshar YS. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 2015;15(10):6985–90. https://doi.org/10.1021/acs.nanolett.5b02989. [109] Wurtz GA, Pollard R, Hendren W, Wiederrecht GP, Gosztola DJ, Podolskiy VA, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nat Nanotechnol. 2011;6(2):106–10. [110] Guo PJ, Schaller RD, Ketterson JB, Chang RPH. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude. Nat Photonics. 2016;10(4):267–73. https://doi.org/10.1038/nphoton.2016.14. [111] Clerici M, Kinsey N, DeVault C, Kim J, Carnemolla EG, Caspani L, et al. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nat Commun. 2017;8:15829. [112] Yang YM, Kelley K, Sachet E, Campione S, Luk TS, Maria JP, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber. Nat Photonics. 2017;11(6):390–5. [113] Alam MZ, Schulz SA, Upham J, De Leon I, Boyd RW. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat Photonics. 2018;12(2):79–83. [114] Voisin C, Del Fatti N, Christofilos D, Vallée F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J Phys Chem B. 2001;105(12):2264–80. [115] Krasavin AV, Ginzburg P, Zayats AV. Free-electron optical nonlinearities in plasmonic nanostructures: a review of the hydrodynamic description. Laser Photonics Rev. 2018;12(1):1700082. [116] Del Fatti N, Bouffanais R, Vallee F, Flytzanis C. Nonequilibrium electron interactions in metal films. Phys Rev Lett. 1998;81(4):922–5. [117] Ren MX, Jia BH, Ou JY, Plum E, Zhang JF, MacDonald KF, et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv Mater. 2011;23(46):5540–4. https://doi.org/10.1002/adma.201103162. [118] Kinsey N, DeVault C, Kim J, Ferrera M, Shalaev VM, Boltasseva A. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica. 2015;2(7):616–22. https://doi.org/10.1364/OPTICA.2.000616. [119] Guo QB, Cui YD, Yao YH, Ye YT, Yang Y, Liu XM, et al. A solution-processed ultrafast optical switch based on a nanostructured epsilon-near-zero medium. Adv Mater. 2017;29(27):7. [120] Wang J, Coillet A, Demichel O, Wang Z, Rego D, Bouhelier A, et al. Saturable plasmonic metasurfaces for laser mode locking. Light Sci Appl. 2020;9:50. [121] Kartner FX, Jung ID, Keller U. Soliton mode-locking with saturable absorbers. IEEE J Selected Topics Quantum Electron. 1996;2(3):540–56. https://doi.org/10.1109/2944.571754. [122] Keller U, Weingarten KJ, Kartner FX, Kopf D, Braun B, Jung ID, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J Selected Topics Quantum Electron. 1996;2(3):435–53. [123] Spuhler GJ, Paschotta R, Fluck R, Braun B, Moser M, Zhang G, et al. Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J Opt Soc Am B-Opt Phys. 1999;16(3):376–88. https://doi.org/10.1364/JOSAB.16.000376. [124] Keller U. Recent developments in compact ultrafast lasers. Nature. 2003;424(6950):831–8. [125] Keller U, Tropper AC. Passively modelocked surface-emitting semiconductor lasers. Phys Rep-Rev Sect Phys Lett. 2006;429(2):67–120. [126] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen ZX, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv Funct Mater. 2009;19(19):3077–83. [127] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, et al. Graphene mode-locked ultrafast laser. ACS Nano. 2010;4(2):803–10. [128] Sun Z, Hasan T, Ferrari AC. Ultrafast lasers mode-locked by nanotubes and graphene. Physica E-Low-Dimensional Syst Nanostructures. 2012;44(6):1082–91. [129] Martinez A, Sun Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat Photonics. 2013;7(11):842–5. [130] Wang K, Wang J, Fan J, Lotya M, O'Neill A, Fox D, et al. Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano. 2013;7(10):9260–7. https://doi.org/10.1021/nn403886t. [131] Woodward RI, Kelleher EJR, Howe RCT, Hu G, Torrisi F, Hasan T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2). Opt Express. 2014;22(25):31113–22. [132] Luo Z, Wu D, Xu B, Xu H, Cai Z, Peng J, Weng J, Xu S, Zhu C, Wang F, Sun Z, Zhang H. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers. Nanoscale. 2016;8(2):1066–72. https://doi.org/10.1039/C5NR06981E. [133] Li D, Jussila H, Karvonen L, Ye G, Lipsanen H, Chen X, et al. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci Rep. 2015;5:15899. [134] Wang Y, Huang G, Mu H, Lin S, Chen J, Xiao S, et al. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension. Appl Phys Lett. 2015;107(9):091905. [135] Hu G, Albrow-Owen T, Jin X, Ali A, Hu Y, Howe RCT, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat Commun. 2017;8:278. [136] Krause JL, Schafer KJ, Kulander KC. High-order harmonic generation from atoms and ions in the high intensity regime. Phys Rev Lett. 1992;68(24):3535–8. [137] Schafer KJ, Yang B, DiMauro LF, Kulander KC. Above threshold ionization beyond the high harmonic cutoff. Phys Rev Lett. 1993;70(11):1599–602. https://doi.org/10.1103/PhysRevLett.70.1599. [138] Corkum PB. Plasma perspective on strong field multiphoton ionization. Phys Rev Lett. 1993;71(13):1994–7. [139] Stolow A, Bragg AE, Neumark DM. Femtosecond time-resolved photoelectron spectroscopy. Chem Rev. 2004;104(4):1719–57. https://doi.org/10.1021/cr020683w. [140] Cavalieri AL, Mueller N, Uphues T, Yakovlev VS, Baltuska A, Horvath B, et al. Attosecond spectroscopy in condensed matter. Nature. 2007;449(7165):1029–32. [141] Corkum PB, Krausz F. Attosecond science. Nat Phys. 2007;3(6):381–7. [142] Krausz F, Ivanov M. Attosecond Phys. Rev Mod Phys. 2009;81(1):163–234. [143] Ferray M, Lhuillier A, Li XF, Lompre LA, Mainfray G, Manus C. Multiple-harmonic conversion of 1064-nm radiation in rare-gases. J Phys B-Atom Mol Opt Phys. 1988;21(3):L31–L5. [144] Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, et al. Attosecond control of electronic processes by intense light fields. Nature. 2003;421(6923):611–5. [145] McFarland BK, Farrell JP, Bucksbaum PH, Gühr M. High harmonic generation from multiple orbitals in N2. Science. 2008;322(5905):1232. [146] Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W. High-harmonic generation by resonant plasmon field enhancement. Nature. 2008;453(7196):757–60. [147] Ghimire S, DiChiara AD, Sistrunk E, Agostini P, DiMauro LF, Reis DA. Observation of high-order harmonic generation in a bulk crystal. Nat Phys. 2011;7(2):138–41. [148] Luu TT, Garg M, Kruchinin SY, Moulet A, Hassan MT, Goulielmakis E. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature. 2015;521(7553):498–502. [149] Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat Photonics. 2014;8(2):119–23. [150] Han S, Kim H, Kim YW, Kim Y-J, Kim S, Park I-Y, et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat Commun. 2016;7(1):13105. [151] Vampa G, Ghamsari BG, Siadat Mousavi S, Hammond TJ, Olivieri A, Lisicka-Skrek E, et al. Plasmon-enhanced high-harmonic generation from silicon. Nat Phys. 2017;13(7):659–62. [152] Liu H, Guo C, Vampa G, Zhang JL, Sarmiento T, Xiao M, et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat Phys. 2018;14(10):1006–10. [153] Yang Y, Lu J, Manjavacas A, Luk TS, Liu H, Kelley K, Maria JP, Runnerstrom EL, Sinclair MB, Ghimire S, Brener I. High-harmonic generation from an epsilon-near-zero material. Nat Phys. 2019;15(10):1022–6. https://doi.org/10.1038/s41567-019-0584-7. [154] Sivis M, Taucer M, Vampa G, Johnston K, Staudte A, Naumov AY, Villeneuve DM, Ropers C, Corkum PB. Tailored semiconductors for high-harmonic optoelectronics. Science. 2017;357(6348):303–6. https://doi.org/10.1126/science.aan2395. [155] Wang J, Bo F, Wan S, Li W, Gao F, Li J, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt Express. 2015;23(18):23072–8. [156] Rao A, Patil A, Rabiei P, Honardoost A, Desalvo R, Paolella A, et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Opt Lett. 2016;41(24):5700–3. [157] Liang H, Luo R, He Y, Jiang H, Lin Q. High-quality lithium niobate photonic crystal nanocavities. Optica. 2017;4(10):1251–8. [158] Zhang M, Wang C, Cheng R, Shams-Ansari A, Loncar M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica. 2017;4(12):1536–7. [159] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature. 2018;562(7725):101–4. https://doi.org/10.1038/s41586-018-0551-y. [160] Wang C, Zhang M, Stern B, Lipson M, Loncar M. Nanophotonic lithium niobate electro-optic modulators. Opt Express. 2018;26(2):1547–55. [161] Gao BF, Ren MX, Wu W, Hu H, Cai W, Xu JJ. Lithium niobate metasurfaces. Laser Photonics Rev. 2019;13(5):6. [162] Vabishchevich PP, Liu S, Sinclair MB, Keeler GA, Peake GM, Brener I. Enhanced second-harmonic generation using broken symmetry III–V semiconductor Fano metasurfaces. ACS Photonics. 2018;5(5):1685–90. https://doi.org/10.1021/acsphotonics.7b01478. [163] Koshelev K, Tang Y, Li K, Choi D-Y, Li G, Kivshar Y. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics. 2019;6(7):1639–44. [164] Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys Rev Lett. 2019;123(25):253901. [165] Lin Z, Liang X, Loncar M, Johnson SG, Rodriguez AW. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica. 2016;3(3):233–8. [166] Hughes TW, Minkov M, Williamson IAD, Fan S. Adjoint method and inverse design for nonlinear nanophotonic devices. ACS Photonics. 2018;5(12):4781–7. [167] Sitawarin C, Jin W, Lin Z, Rodriguez AW. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion invited. Photonics Research. 2018;6(5):B82–B9. [168] Lei X, Rahmani M, Yixuan M, Smirnova DA, Kamali KZ, Fu D, et al. Enhanced light-matter interactions in dielectric nanostructures via machine-learning approach. Adv Photonics. 2020;2(2):026003. [169] Shi L, Iwan B, Nicolas R, Ripault Q, Andrade JRC, Han S, et al. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica. 2017;4(9):1038–43. [170] Zimmermann P, Hötger A, Fernandez N, Nolinder A, Müller K, Finley JJ, et al. Toward plasmonic tunnel gaps for nanoscale photoemission currents by on-chip laser ablation. Nano Lett. 2019;19(2):1172–8. [171] Li Z-Z, Wang L, Fan H, Yu Y-H, Sun H-B, Juodkazis S, et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light-Sci Appl. 2020;9(1):41. [172] Liu X-Q, Yu L, Yang S-N, Chen Q-D, Wang L, Juodkazis S, et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev. 2019;13(5):1800272. [173] Liu X-Q, Yang S-N, Yu L, Chen Q-D, Zhang Y-L, Sun H-B. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv Funct Mater. 2019;29(18):1900037. [174] Wei D, Wang C, Wang H, Hu X, Wei D, Fang X, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat Photonics. 2018;12(10):596–600.
点击查看大图
计量
- 文章访问数: 156
- HTML全文浏览量: 1
- PDF下载量: 120
- 被引次数: 0