Optical coherence encryption with structured random light
-
摘要: Information encryption with optical technologies has become increasingly important due to remarkable multidimensional capabilities of light fields. However, the optical encryption protocols proposed to date have been primarily based on the first-order field characteristics, which are strongly affected by interference effects and make the systems become quite unstable during light-matter interaction. Here, we introduce an alternative optical encryption protocol whereby the information is encoded into the second-order spatial coherence distribution of a structured random light beam via a generalized van Cittert-Zernike theorem. We show that the proposed approach has two key advantages over its conventional counterparts. First, the complexity of measuring the spatial coherence distribution of light enhances the encryption protocol security. Second, the relative insensitivity of the second-order statistical characteristics of light to environmental noise makes the protocol robust against the environmental fluctuations, e.g, the atmospheric turbulence. We carry out experiments to demonstrate the feasibility of the coherence-based encryption method with the aid of a fractional Fourier transform. Our results open up a promising avenue for further research into optical encryption in complex environments.
-
关键词:
Abstract: Information encryption with optical technologies has become increasingly important due to remarkable multidimensional capabilities of light fields. However, the optical encryption protocols proposed to date have been primarily based on the first-order field characteristics, which are strongly affected by interference effects and make the systems become quite unstable during light–matter interaction. Here, we introduce an alternative optical encryption protocol whereby the information is encoded into the second-order spatial coherence distribution of a structured random light beam via a generalized van Cittert–Zernike theorem. We show that the proposed approach has two key advantages over its conventional counterparts. First, the complexity of measuring the spatial coherence distribution of light enhances the encryption protocol security. Second, the relative insensitivity of the second-order statistical characteristics of light to environmental noise makes the protocol robust against the environmental fluctuations, e.g, the atmospheric turbulence. We carry out experiments to demonstrate the feasibility of the coherence-based encryption method with the aid of a fractional Fourier transform. Our results open up a promising avenue for further research into optical encryption in complex environments.-
Key words:
- Structured random light /
- Spatial coherence /
- Optical encryption /
- Atmospheric turbulence
-
[1] Mandel L, Wolf E. Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press; 1995. [2] Friberg A, Setälä T. Electromagnetic theory of optical coherence. J Opt Soc Am A. 2016; 33:2431–42. [3] Chen Y, Norrman A, Ponomarenko S, Friberg A. Optical coherence and electromagnetic surface waves. Prog Opt. 2020; 65:105–72. [4] Korotkova O, Gbur G. Applications of optical coherence theory. Prog Opt. 2020; 65:43–104. [5] Baleine E, Dogariu A. Variable coherence scattering microscopy. Phys Rev Lett. 2005; 95(19):193904. [6] Redding B, Choma M, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon. 2012; 6(6):355–9. [7] Gbur G. Partially coherent beam propagation in atmospheric turbulence. J Opt Soc Am A. 2014; 31(9):2038–45. [8] Ponomarenko S. A class of partially coherent beams carrying optical vortices. J Opt Soc Am A. 2001; 18(1):150–6. [9] Ponomarenko S, Huang W, Cada M. Dark and antidark diffraction-free beams. Opt Lett. 2007; 32(17):2508–10. [10] Bogatyryova G, Fel’de C, Polyanskii P, Ponomarenko S, Soskin M, Wolf E. Partially coherent vortex beams with a separable phase. Opt Lett. 2003; 28(11):878–80. [11] Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett. 2007; 32(24):3531–3. [12] Martínez-Herrero R, Mejías P, Gori F. Genuine cross-spectral densities and pseudo-modal expansions. Opt Lett. 2009; 34(9):1399–401. [13] Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Opt Lett. 2012; 37(14):2970–2. [14] Mei Z, Korotkova O. Random sources generating ring-shaped beams. Opt Lett. 2013; 38(2):91–3. [15] Wang F, Liu X, Yuan Y, Cai Y. Experimental generation of partially coherent beams with different complex degrees of coherence. Opt Lett. 2013; 38(11):1814–6. [16] Ma L, Ponomarenko S. Optical coherence gratings and lattices. Opt Lett. 2014; 39(23):6656–9. [17] Chen Y, Wang F, Liu L, Zhao C, Cai Y, Korotkova O. Generation and propagation of a partially coherent vector beam with special correlation functions. Phys Rev A. 2014; 89(1):013801. [18] Chen Y, Gu J, Wang F, Cai Y. Self-splitting properties of a hermite-gaussian correlated schell-model beam. Phys Rev A. 2015; 91(1):013823. [19] Sun B, Huang Z, Zhu X, Wu D, Chen Y, Wang F, Cai Y, Korotkova O. Random source for generating airy-like spectral density in the far field. Opt Express. 2020; 28(5):7182–96. [20] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt Lett. 2011; 36(20):4104–6. [21] Santarsiero M, Martínez-Herrero R, Maluenda D, De Sande J, Piquero G, Gori F. Partially coherent sources with circular coherence. Opt Lett. 2017; 42(8):1512–5. [22] Piquero G, Santarsiero M, Martínez-Herrero R, de Sande J, Alonzo M, Gori F. Partially coherent sources with radial coherence. Opt Lett. 2018; 43(10):2376–9. [23] Hyde IV M, Bose-Pillai S, Wood R. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror. Appl Phys Lett. 2017; 111(10):101106. [24] Zhu X, Wang F, Zhao C, Cai Y, Ponomarenko S. Experimental realization of dark and antidark diffraction-free beams. Opt Lett. 2019; 44(9):2260–3. [25] Hyde M, Xiao X, Voelz D. Generating electromagnetic nonuniformly correlated beams. Opt Lett. 2019; 44(23):5719–22. [26] Yu J, Zhu X, Lin S, Wang F, Gbur G, Cai Y. Vector partially coherent beams with prescribed non-uniform correlation structure. Opt Lett. 2020; 45(13):3824–7. [27] Zhu X, Yu J, Chen Y, Wang F, Korotkova O, Cai Y. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device. Appl Phys Lett. 2020; 117(12):121102. [28] Wang F, Chen Y, Liu X, Cai Y, Ponomarenko S. Self-reconstruction of partially coherent light beams scattered by opaque obstacles. Opt Express. 2016; 24(21):23735–46. [29] Xu Z, Liu X, Chen Y, Wang F, Liu L, Monfared Y, Ponomarenko S, Cai Y, Liang C. Self-healing properties of hermite-gaussian correlated schell-model beams. Opt Express. 2020; 28(3):2828–37. [30] Ding C, Koivurova M, Turunen J, Pan L. Self-focusing of a partially coherent beam with circular coherence. J Opt Soc Am A. 2017; 34(8):1441–7. [31] Lin S, Wang C, Zhu X, Lin R, Wang F, Gbur G, Cai Y, Yu J. Propagation of radially polarized hermite non-uniformly correlated beams in a turbulent atmosphere. Opt Express. 2020; 28(19):27238–49. [32] Chen Y, Ponomarenko S, Cai Y. Self-steering partially coherent beams. Sci Rep. 2017; 7(1):1–7. [33] Mao H, Chen Y, Liang C, Chen L, Cai Y, Ponomarenko S. Self-steering partially coherent vector beams. Opt Express. 2019; 27(10):14353–68. [34] Hyde IV M, Basu S, Xiao X, Voelz D. Producing any desired far-field mean irradiance pattern using a partially-coherent schell-model source. J Opt. 2015; 17(5):055607. [35] Voelz D, Xiao X, Korotkova O. Numerical modeling of schell-model beams with arbitrary far-field patterns. Opt Lett. 2015; 40(3):352–5. [36] Ma L, Ponomarenko S. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt Express. 2015; 23(2):1848–56. [37] Chen Y, Ponomarenko S, Cai Y. Experimental generation of optical coherence lattices. Appl Phys Lett. 2016; 109(6):061107. [38] Divitt S, Novotny L. Spatial coherence of sunlight and its implications for light management in photovoltaics. Optica. 2015; 2(2):95–103. [39] Lu X, Shao Y, Zhao C, Konijnenberg S, Zhu X, Tang Y, Cai Y, Urbach H. Noniterative spatially partially coherent diffractive imaging using pinhole array mask. Adv Photon. 2019; 1(1):016005. [40] Huang Z, Chen Y, Wang F, Ponomarenko S, Cai Y. Measuring complex degree of coherence of random light fields with generalized hanbury brown–twiss experiment. Phys Rev Appl. 2020; 13(4):044042. [41] Dong Z, Huang Z, Chen Y, Wang F, Cai Y. Measuring complex correlation matrix of partially coherent vector light via a generalized hanbury brown–twiss experiment. Opt Express. 2020; 28(14):20634–44. [42] Xu Z, Li X, Liu X, Ponomarenko S, Cai Y, Liang C. Vortex preserving statistical optical beams. Opt Express. 2020; 28(6):8475–83. [43] Yang B, Chen Y, Wang F, Cai Y. Trapping two types of rayleigh particles simultaneously by a focused rotational elliptical laguerre–gaussian correlated schell-model beam. J Quant Spectrosc Radiat Transf. 2021; 262:107518. [44] Liu S, Guo C, Sheridan J. A review of optical image encryption techniques. Opt Laser Technol. 2014; 57:327–42. [45] Chen W, Javidi B, Chen X. Advances in optical security systems. Adv Opt Photon. 2014; 6(2):120–55. [46] Refregier P, Javidi B. Optical image encryption based on input plane and fourier plane random encoding. Opt Lett. 1995; 20(7):767–9. [47] Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional fourier domain. Opt Lett. 2000; 25(12):887–9. [48] Situ G, Zhang J. Double random-phase encoding in the fresnel domain. Opt Lett. 2004; 29(14):1584–6. [49] Matoba O, Javidi B. Encrypted optical memory system using three-dimensional keys in the fresnel domain. Opt Lett. 1999; 24(11):762–4. [50] Rubinsztein-Dunlop H, Forbes A, et al. Roadmap on structured light. J Opt. 2016; 19(1):013001. [51] Rosales-Guzmán C, Ndagano B, Forbes A. A review of complex vector light fields and their applications. J Opt. 2018; 20(12):123001. [52] Forbes A. Structured light from lasers. Laser Photon Rev. 2019; 13(11):1900140. [53] Qu G, Yang W, Song Q, Liu Y, Qiu C-W, Han J, Tsai D-P, Xiao S. Reprogrammable meta-hologram for optical encryption. Nat Commun. 2020; 11(1):1–5. [54] Trichili A, Salem A, Dudley A, Zghal M, Forbes A. Encoding information using laguerre gaussian modes over free space turbulence media. Opt Lett. 2016; 41(13):3086–9. [55] Fang X, Ren H, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photon. 2020; 14(2):102–8. [56] Qiao Z, Wan Z, Xie G, Wang J, Qian L, Fan D. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX. 2020; 1:1–14. [57] Zhao Y, Wang J. High-base vector beam encoding/decoding for visible-light communications. Opt Lett. 2015; 40(21):4843–6. [58] Milione G, Nguyen T, Leach J, Nolan D, Alfano R. Using the nonseparability of vector beams to encode information for optical communication. Opt Lett. 2015; 40(21):4887–90. [59] Xian M, Xu Y, Ouyang X, Cao Y, Lan S, Li X. Segmented cylindrical vector beams for massively-encoded optical data storage. Sci Bull. 2020; 65(24):2072–9. [60] Larocque H, D’Errico A, Ferrer-Garcia M, Carmi A, Cohen E, Karimi E. Optical framed knots as information carriers. Nat Commun. 2020; 11(1):1–8. [61] Goodman J. Statistical Optics. New York: Wiley; 2015. [62] Ni H, Liang C, Wang F, Chen Y, Ponomarenko S, Cai Y. Non-gaussian statistics of partially coherent light in atmospheric turbulence. Chin Phys B. 2020; 29(6):064203. [63] Alfalou A, Brosseau C. Optical image compression and encryption methods. Adv Opt Photon. 2009; 1(3):589–636. [64] Javidi B, Carnicer A, Yamaguchi M, et al.Roadmap on optical security. J Opt. 2016; 18(8):083001. [65] Takeda M, Wang W, Naik D, Singh R. Spatial statistical optics and spatial correlation holography: a review. Opt Rev. 2014; 21(6):849–61.
点击查看大图
计量
- 文章访问数: 231
- HTML全文浏览量: 0
- PDF下载量: 59
- 被引次数: 0