Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source
doi: 10.1186/s43074-021-00028-y
Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source
-
摘要: High harmonic generation (HHG) enables coherent extreme-ultraviolet (XUV) radiation with ultra-short pulse duration in a table-top setup. This has already enabled a plethora of applications. Nearly all of these applications would benefit from a high photon flux to increase the signal-to-noise ratio and decrease measurement times. In addition, shortest pulses are desired to investigate fastest dynamics in fields as diverse as physics, biology, chemistry and material sciences. In this work, the up-to-date most powerful table-top XUV source with 12.9 ±3.9 mW in a single harmonic line at 26.5 eV is demonstrated via HHG of a frequency-doubled and post-compressed fibre laser. At the same time the spectrum supports a Fourier-limited pulse duration of sub-6 fs in the XUV, which allows accessing ultrafast dynamics with an order of magnitude higher photon flux than previously demonstrated. This concept will greatly advance and facilitate applications of XUV radiation in science and technology and enable photonhungry ultrafast studies.Abstract: High harmonic generation (HHG) enables coherent extreme-ultraviolet (XUV) radiation with ultra-short pulse duration in a table-top setup. This has already enabled a plethora of applications. Nearly all of these applications would benefit from a high photon flux to increase the signal-to-noise ratio and decrease measurement times. In addition, shortest pulses are desired to investigate fastest dynamics in fields as diverse as physics, biology, chemistry and material sciences. In this work, the up-to-date most powerful table-top XUV source with 12.9 ± 3.9 mW in a single harmonic line at 26.5 eV is demonstrated via HHG of a frequency-doubled and post-compressed fibre laser. At the same time the spectrum supports a Fourier-limited pulse duration of sub-6 fs in the XUV, which allows accessing ultrafast dynamics with an order of magnitude higher photon flux than previously demonstrated. This concept will greatly advance and facilitate applications of XUV radiation in science and technology and enable photon-hungry ultrafast studies.
-
[1] McPherson A, Gibson G, Jara H, Johann U, Luk TS, McIntyre IA, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J Opt Soc Am B. 1987;4(4):595. https://doi.org/10.1364/JOSAB.4.000595. [2] Ferray M, L’Huillier A, Li XF, Lompre LA, Mainfray G, Manus C. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J Phys B Atomic Mol Phys. 1988;21(3):L31–5. https://doi.org/10.1088/0953-4075/21/3/001. [3] Popmintchev T, Chen M-C, Arpin P, Murnane MM, Kapteyn HC. The attosecond nonlinear optics of bright coherent X-ray generation. Nat Photonics. 2010;4(12):822–32. https://doi.org/10.1038/nphoton.2010.256. [4] Sakdinawat A, Attwood D. Nanoscale X-ray imaging. Nat Photonics. 2010;4(12):840–8. https://doi.org/10.1038/nphoton.2010.267. [5] Chang Z, Corkum PB, Leone SR. Attosecond optics and technology: progress to date and future prospects [invited]. J Opt Soc Am B. 2016;33(6):1081. https://doi.org/10.1364/JOSAB.33.001081. [6] Krausz F, Ivanov M. Attosecond physics. Rev Mod Phys. 2009;81(1):163–234. https://doi.org/10.1103/RevModPhys.81.163. [7] Constant E, Garzella D, Breger P, Mével E, Dorrer C, Le Blanc C, et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys Rev Lett. 1999;82(8):1668–71. https://doi.org/10.1103/PhysRevLett.82.1668. [8] Takahashi E, Nabekawa Y, Midorikawa K. Generation of 10-μJ coherent extreme-ultraviolet light by use of high-order harmonics. Opt Lett. 2002;27(21):1920. https://doi.org/10.1364/OL.27.001920. [9] Lee J, Carlson DR, Jones RJ. Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt Express. 2011;19(23):23315–26. https://doi.org/10.1364/OE.19.023315. [10] Cingöz A, Yost DC, Allison TK, Ruehl A, Fermann ME, Hartl I, et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature. 2012;482(7383):68–71. https://doi.org/10.1038/nature10711. [11] Hädrich S, Klenke A, Rothhardt J, Krebs M, Hoffmann A, Pronin O, et al. High photon flux table-top coherent extreme-ultraviolet source. Nat Photonics. 2014;8(10):779–83. https://doi.org/10.1038/nphoton.2014.214. [12] Porat G, Heyl CM, Schoun SB, Benko C, Dörre N, Corwin KL, et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nat Photonics. 2018;12(7):387–91. https://doi.org/10.1038/s41566-018-0199-z. [13] Klas R, Demmler S, Tschernajew M, Hädrich S, Shamir Y, Tünnermann A, et al. Table-top milliwatt-class extreme ultraviolet high harmonic light source. Optica. 2016;3(11):1167. https://doi.org/10.1364/OPTICA.3.001167. [14] Comby A, Descamps D, Beauvarlet S, Gonzalez A, Guichard F, Petit S, et al. Cascaded harmonic generation from a fiber laser: a milliwatt XUV source. Opt Express. 2019;27(15):20383–96. https://doi.org/10.1364/OE.27.020383. [15] Wang H, Xu Y, Ulonska S, Robinson JS, Ranitovic P, Kaindl RA. Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV. Nat Commun. 2015;6(1):7459. https://doi.org/10.1038/ncomms8459. [16] Saraceno CJ, Sutter D, Metzger T, Abdou AM. The amazing progress of high-power ultrafast thin-disk lasers. J Eur Opt Soc Publ. 2019;15(1):15. https://doi.org/10.1186/s41476-019-0108-1. [17] Keunecke M, Möller C, Schmitt D, Nolte H, Jansen GSM, Reutzel M, et al. Time-resolved momentum microscopy with a 1 MHz high-harmonic extreme ultraviolet beamline. Rev Sci Instrum. 2020;91(6):063905. https://doi.org/10.1063/5.0006531. [18] Comby A, Bloch E, Beauvarlet S, Rajak D, Beaulieu S, Descamps D, et al. Bright, polarization-tunable high repetition rate extreme ultraviolet beamline for coincidence electron–ion imaging. J Phys B Atomic Mol Phys. 2020;53(23):234003. https://doi.org/10.1088/1361-6455/abbe27. [19] Geneaux R, Marroux HJB, Guggenmos A, Neumark DM, Leone SR. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Philos Trans R Soc A Math Phys Eng Sci. 2019;377(2145):20170463. https://doi.org/10.1098/rsta.2017.0463. [20] Hütten K, Mittermair M, Stock SO, Beerwerth R, Shirvanyan V, Riemensberger J, et al. Ultrafast quantum control of ionization dynamics in krypton. Nat Commun. 2018;9(1):719. https://doi.org/10.1038/s41467-018-03122-1. [21] Kfir O, Zayko S, Nolte C, Sivis M, Möller M, Hebler B, et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci Adv. 2017;3:eaao4641. https://doi.org/10.1126/sciadv.aao4641. [22] LaForge AC, Benediktovitch A, Sukharnikov V, Krušič Š, Žitnik M, Debatin M, et al. Time-resolved quantum beats in the fluorescence of helium resonantly excited by XUV radiation. J Phys B Atomic Mol Phys. 2020;53(24):244012. https://doi.org/10.1088/1361-6455/abc660. [23] Rothhardt J, Bilal M, Beerwerth R, Volotka AV, Hilbert V, Stöhlker T, et al. Lifetime measurements of ultrashort-lived excited states in be-like ions. X-Ray Spectrom. 2020;49(1):165–8. https://doi.org/10.1002/xrs.3079. [24] González-Castrillo A, Martín F, Palacios A. Quantum state holography to reconstruct the molecular wave packet using an attosecond XUV–XUV pump-probe technique. Sci Rep. 2020;10(1):12981. https://doi.org/10.1038/s41598-020-69733-1. [25] Corkum PB, Krausz F. Attosecond science. Nat Phys. 2007;3(6):381–7. https://doi.org/10.1038/nphys620. [26] Lépine F, Ivanov MY, Vrakking MJJ. Attosecond molecular dynamics: fact or fiction? Nat Photonics. 2014;8(3):195–204. https://doi.org/10.1038/nphoton.2014.25. [27] Siegrist F, Gessner JA, Ossiander M, Denker C, Chang Y-P, Schröder MC, et al. Light-wave dynamic control of magnetism. Nature. 2019;571(7764):240–4. https://doi.org/10.1038/s41586-019-1333-x. [28] Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser. Opt Lett. 2016;41(15):3439–42. https://doi.org/10.1364/OL.41.003439. [29] Shiner AD, Trallero-Herrero C, Kajumba N, Bandulet H-C, Comtois D, Légaré F, et al. Wavelength scaling of high harmonic generation efficiency. Phys Rev Lett. 2009;103(7):073902. https://doi.org/10.1103/PhysRevLett.103.073902. [30] Ishikawa KL, Schiessl K, Persson E, Burgdörfer J. Fine-scale oscillations in the wavelength and intensity dependence of high-order harmonic generation: connection with channel closings. Phys Rev A. 2009;79(3):033411. https://doi.org/10.1103/PhysRevA.79.033411. [31] Zaïr A, Holler M, Guandalini A, Schapper F, Biegert J, Gallmann L, et al. Quantum path interferences in high-order harmonic generation. Phys Rev Lett. 2008;100(14):143902. https://doi.org/10.1103/PhysRevLett.100.143902. [32] Lewenstein M, Balcou P, Ivanov MY, L’Huillier A, Corkum PB. Theory of high-harmonic generation by low-frequency laser fields. Phys Rev A. 1994;49(3):2117–32. https://doi.org/10.1103/PhysRevA.49.2117. [33] Descamps D, Guichard F, Petit S, Beauvarlet S, Comby A, Lavenu L, et al. High-power sub-15 fs nonlinear pulse compression at 515 nm of an ultrafast Yb-doped fiber amplifier. Opt Lett. 2021;46:1804. https://doi.org/10.1364/OL.419683. [34] Xia J, Altucci C, Amoruso S, Bruzzese R, Velotta R, Wang X. Generation of high energy, 30 fs pulses at 527 nm by hollow-fiber compression technique. Opt Express. 2008;16(6):3527–36. https://doi.org/10.1364/OE.16.003527. [35] Pronin O, Pervak V, Fill E, Rauschenberger J, Krausz F, Apolonski A. Ultrabroadband efficient intracavity XUV output coupler. Opt Express. 2011;19(11):10232–40. https://doi.org/10.1364/OE.19.010232. [36] Klas R, Kirsche A, Tschernajew M, Rothhardt J, Limpert J. Annular beam driven high harmonic generation for high flux coherent XUV and soft X-ray radiation. Opt Express. 2018;26(15):19318–27. https://doi.org/10.1364/OE.26.019318. [37] Hädrich S, Rothhardt J, Demmler S, Tschernajew M, Hoffmann A, Krebs M, et al. Scalability of components for kW-level average power few-cycle lasers. Appl Opt. 2016;55(7):1636–40. https://doi.org/10.1364/AO.55.001636. [38] Rothhardt J, Rothhardt C, Müller M, Klenke A, Kienel M, Demmler S, et al. 100 W average power femtosecond laser at 343 nm. Opt Lett. 2016;41(8):1885–8. https://doi.org/10.1364/OL.41.001885. [39] Travers JC, Chang W, Nold J, Joly NY, PSJ R. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]. J Opt Soc Am B. 2011;28:A11. https://doi.org/10.1364/JOSAB.28.000A11. [40] Ammosov MV, Delone NB, Krainov VP. In: Alcock JA, editor. Sov. Phys. JETP Tunnel ionization of complex atoms and atomic ions in electromagnetic field; 1986. p. 138. https://doi.org/10.1117/12.938695. [41] Henke BL, Gullikson EM, Davis JC. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At Data Nucl Data Tables. 1993;54(2):181–342. https://doi.org/10.1006/adnd.1993.1013.
点击查看大图
计量
- 文章访问数: 273
- HTML全文浏览量: 1
- PDF下载量: 101
- 被引次数: 0