Displacement-mediated bound states in the continuum in all-dielectric superlattice metasurfaces
doi: 10.1186/s43074-021-00029-x
Displacement-mediated bound states in the continuum in all-dielectric superlattice metasurfaces
-
摘要: Bound states in the continuum (BICs) are localized states coexisting with extended waves inside the continuous spectrum range, which have infinite lifetimes without any radiation. To extract high-Q quasi-BIC resonances from the symmetry-protected BIC for practical applications, symmetry-breaking approaches are usually exploited, either by slightly breaking the excitation field symmetry or structure symmetry. Here, we introduce an all-dielectric superlattice metasurface that can symmetrycompatibly convert BIC states into high-Q quasi-BIC modes based on the guidedmode resonance coupling by relative displacement tuning. The metasurface is composed of a superlattice of multiple nanobeams, supporting both magnetic mode and toroidal mode with large tunability. Both modes can interact with the incident continuum by mediating the displacement between nanobeams, which empowers dual asymmetric Fano resonances with high Q-factors. The bandwidth of the toroidal mode under y-polarized incidences and that of the magnetic mode under x-polarized incidences can be readily tuned by the local displacement between nanobeams in each unit cell. Such displacement-mediated BIC resonance is promising for various applications such as bio-molecule sensing and low threshold lasing.
-
关键词:
Abstract: Bound states in the continuum (BICs) are localized states coexisting with extended waves inside the continuous spectrum range, which have infinite lifetimes without any radiation. To extract high-Q quasi-BIC resonances from the symmetry-protected BIC for practical applications, symmetry-breaking approaches are usually exploited, either by slightly breaking the excitation field symmetry or structure symmetry. Here, we introduce an all-dielectric superlattice metasurface that can symmetry-compatibly convert BIC states into high-Q quasi-BIC modes based on the guided-mode resonance coupling by relative displacement tuning. The metasurface is composed of a superlattice of multiple nanobeams, supporting both magnetic mode and toroidal mode with large tunability. Both modes can interact with the incident continuum by mediating the displacement between nanobeams, which empowers dual asymmetric Fano resonances with high Q-factors. The bandwidth of the toroidal mode under y-polarized incidences and that of the magnetic mode under x-polarized incidences can be readily tuned by the local displacement between nanobeams in each unit cell. Such displacement-mediated BIC resonance is promising for various applications such as bio-molecule sensing and low threshold lasing. -
[1] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, Capasso F, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science. 2011;334(6054):333–7. https://doi.org/10.1126/science.1210713. [2] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY, Capasso F. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 2016;352(6290):1190–4. https://doi.org/10.1126/science.aaf6644. [3] Wang S, Wu PC, Su VC, Lai YC, Chen MK, Kuo HY, et al. A broadband achromatic metalens in the visible. Nat Nanotechnol. 2018;13(3):227–32. https://doi.org/10.1038/s41565-017-0052-4. [4] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, et al. Imaging based on metalenses. PhotoniX. 2020;1(2):1-24. [5] Sell D, Yang J, Doshay S, Yang R, Fan JA. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett. 2017;17(6):3752–7. https://doi.org/10.1021/acs.nanolett.7b01082. [6] Shi T, Wang Y, Deng ZL, Ye X, Dai Z, Cao Y, et al. All-dielectric kissing-dimer metagratings for asymmetric high diffraction. Adv Opt Mater. 2019;7(24):1901389. [7] Zheng G, Muhlenbernd H, Kenney M, Li G, Zentgraf T, Zhang S. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol. 2015;10(4):308–12. https://doi.org/10.1038/nnano.2015.2. [8] Deng ZL, Deng J, Zhuang X, Wang S, Shi T, Wang GP, et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light: Sci Appl. 2018;7(1):78. https://doi.org/10.1038/s41377-018-0075-0. [9] Yang Y, Kravchenko II, Briggs DP, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun. 2014;5(1):5753. https://doi.org/10.1038/ncomms6753. [10] Fernandez-Bravo A, Wang D, Barnard ES, Teitelboim A, Tajon C, Guan J, et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat Mater. 2019;18(11):1172–6. https://doi.org/10.1038/s41563-019-0482-5. [11] Zhao R, Huang L, Wang Y. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX. 2020;1(20):1-24. [12] Stillinger FH, Herrick DR. Bound states in the continuum. Phys Rev A. 1975;11(2):446–54. https://doi.org/10.1103/PhysRevA.11.446. [13] Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Soljačić M. Bound states in the continuum. Nat Rev Mater. 2016;1(9):1-13. [14] Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett. 2018;121(19):193903. https://doi.org/10.1103/PhysRevLett.121.193903. [15] Azzam SI, Shalaev VM, Boltasseva A, Kildishev AV. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys Rev Lett. 2018;121(25):253901. https://doi.org/10.1103/PhysRevLett.121.253901. [16] Liu M, Choi DY. Extreme Huygens’ metasurfaces based on quasi-bound states in the continuum. Nano Lett. 2018;18(12):8062–9. https://doi.org/10.1021/acs.nanolett.8b04774. [17] Bogdanov AA, Koshelev KL, Kapitanova PV, Rybin MV, Gladyshev SA, Sadrieva ZF, et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime. Adv Photonics. 2019;1(1):016001. [18] Rybin MV, Koshelev KL, Sadrieva ZF, Samusev KB, Bogdanov AA, Limonov MF, et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys Rev Lett. 2017;119(24):243901. https://doi.org/10.1103/PhysRevLett.119.243901. [19] Carletti L, Koshelev K, De Angelis C, Kivshar Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys Rev Lett. 2018;121(3):033903. https://doi.org/10.1103/PhysRevLett.121.033903. [20] Koshelev K, Kruk S, Melik-Gaykazyan E, Choi JH, Bogdanov A, Park HG, et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science. 2020;367(6475):288–92. https://doi.org/10.1126/science.aaz3985. [21] Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys Rev Lett. 2019;123(25):253901. https://doi.org/10.1103/PhysRevLett.123.253901. [22] Koshelev K, Tang Y, Li K, Choi D-Y, Li G, Kivshar Y. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics. 2019;6(7):1639–44. https://doi.org/10.1021/acsphotonics.9b00700. [23] Xu L, Zangeneh Kamali K, Huang L, Rahmani M, Smirnov A, Camacho-Morales R, et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv Sci. 2019;6(15):1802119. [24] Leitis A, Tittl A, Liu M, Lee BH, Gu MB, Kivshar YS, et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci Adv. 2019;5(5):eaaw2871. [25] Tittl A, Leitis A, Liu M, Yesilkoy F, Choi DY, Neshev DN, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science. 2018;360(6393):1105–9. https://doi.org/10.1126/science.aas9768. [26] Yesilkoy F, Arvelo ER, Jahani Y, Liu M, Tittl A, Cevher V, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics. 2019;13(6):390–6. https://doi.org/10.1038/s41566-019-0394-6. [27] Kupriianov AS, Xu Y, Sayanskiy A, Dmitriev V, Kivshar YS, Tuz VR. Metasurface engineering through bound states in the continuum. Phys Rev Appl. 2019;12(1):014024. [28] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B. Lasing action from photonic bound states in continuum. Nature. 2017;541(7636):196–9. https://doi.org/10.1038/nature20799. [29] Hsu CW, Zhen B, Lee J, Chua SL, Johnson SG, Joannopoulos JD, et al. Observation of trapped light within the radiation continuum. Nature. 2013;499(7457):188–91. https://doi.org/10.1038/nature12289. [30] Linton CM, McIver P. Embedded trapped modes in water waves and acoustics. Wave Motion. 2007;45(1–2):16–29. https://doi.org/10.1016/j.wavemoti.2007.04.009. [31] Fan K, Shadrivov IV, Padilla WJ. Dynamic bound states in the continuum. Optica. 2019;6(2):169-173. [32] Ha ST, Fu YH, Emani NK, Pan Z, Bakker RM, Paniagua-Dominguez R, et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat Nanotechnol. 2018;13(11):1042–7. https://doi.org/10.1038/s41565-018-0245-5. [33] Doeleman HM, Monticone F, den Hollander W, Alù A, Koenderink AF. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat Photonics. 2018;12(7):397–401. https://doi.org/10.1038/s41566-018-0177-5. [34] Sadrieva Z, Frizyuk K, Petrov M, Kivshar Y, Bogdanov A. Multipolar origin of bound states in the continuum. Phys Rev B. 2019;100(11):115303. [35] Jin J, Yin X, Ni L, Soljacic M, Zhen B, Peng C. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature. 2019;574(7779):501–4. https://doi.org/10.1038/s41586-019-1664-7. [36] Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, et al. Circularly polarized states spawning from bound states in the continuum. Phys Rev Lett. 2019;123(11):116104. https://doi.org/10.1103/PhysRevLett.123.116104. [37] Marinica DC, Borisov AG, Shabanov SV. Bound states in the continuum in photonics. Phys Rev Lett. 2008;100(18):183902. https://doi.org/10.1103/PhysRevLett.100.183902. [38] Sadrieva ZF, Sinev IS, Koshelev KL, Samusev A, Iorsh IV, Takayama O, et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photonics. 2017;4(4):723–7. https://doi.org/10.1021/acsphotonics.6b00860. [39] Zhen B, Hsu CW, Lu L, Stone AD, Soljacic M. Topological nature of optical bound states in the continuum. Phys Rev Lett. 2014;113(25):257401. https://doi.org/10.1103/PhysRevLett.113.257401. [40] Lee S-G, Kim S-H, Kee C-S. Bound states in the continuum (BIC) accompanied by avoided crossings in leaky-mode photonic lattices. Nanophotonics. 2020;9(14):4373–80. https://doi.org/10.1515/nanoph-2020-0346. [41] Yin X, Jin J, Soljačić M, Peng C, Zhen B. Observation of unidirectional bound states in the continuum enabled by topological defects. arXiv preprint arXiv:190411464. 2019. [42] Overvig AC, Malek SC, Carter MJ, Shrestha S, Yu N. Selection rules for quasibound states in the continuum. Phys Rev B. 2020;102(3):035434. [43] Overvig AC, Malek SC, Yu N. Multifunctional nonlocal metasurfaces. Phys Rev Lett. 2020;125(1):017402. https://doi.org/10.1103/PhysRevLett.125.017402. [44] Evlyukhin AB, Reinhardt C, Chichkov BN. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation. Phys Rev B. 2011;84(23):235429. https://doi.org/10.1103/PhysRevB.84.235429. [45] He Y, Guo G, Feng T, Xu Y, Miroshnichenko AE. Toroidal dipole bound states in the continuum. Phys Rev B. 2018;98(16):161112. https://doi.org/10.1103/PhysRevB.98.161112. [46] Liu W, Kivshar YS. Multipolar interference effects in nanophotonics. Philos Trans A Math Phys Eng Sci. 2017;375(2090):1–10. [47] Liu W, Kivshar YS. Generalized Kerker effects in nanophotonics and meta-optics. Opt Express. 2018;26(10):13085–105. https://doi.org/10.1364/OE.26.013085. [48] Nieto-Vesperinas M, Gomez-Medina R, Saenz JJ. Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J Opt Soc Am A-Opt Image Sci Vis. 2011;28(1):54–60. https://doi.org/10.1364/JOSAA.28.000054. [49] Radescu EE, Vaman G. Exact calculation of the angular momentum loss, recoil force, and radiation intensity for an arbitrary source in terms of electric, magnetic, and toroid multipoles. Phys Rev E Stat Nonlinear Soft Matter Phys. 2002;65(4):046609. https://doi.org/10.1103/PhysRevE.65.046609. [50] Savinov V, Fedotov VA, Zheludev NI. Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Phys Rev B. 2014;89(20):205112. https://doi.org/10.1103/PhysRevB.89.205112.
点击查看大图
计量
- 文章访问数: 217
- HTML全文浏览量: 0
- PDF下载量: 67
- 被引次数: 0