Deep learning wavefront sensing and aberration correction in atmospheric turbulence
doi: 10.1186/s43074-021-00030-4
Deep learning wavefront sensing and aberration correction in atmospheric turbulence
-
摘要: Deep learning neural networks are used for wavefront sensing and aberration correction in atmospheric turbulence without any wavefront sensor (i.e. reconstruction of the wavefront aberration phase from the distorted image of the object). We compared and found the characteristics of the direct and indirect reconstruction ways:(i) directly reconstructing the aberration phase; (ii) reconstructing the Zernike coefficients and then calculating the aberration phase. We verified the generalization ability and performance of the network for a single object and multiple objects. What's more, we verified the correction effect for a turbulence pool and the feasibility for a real atmospheric turbulence environment.
-
关键词:
Abstract: Deep learning neural networks are used for wavefront sensing and aberration correction in atmospheric turbulence without any wavefront sensor (i.e. reconstruction of the wavefront aberration phase from the distorted image of the object). We compared and found the characteristics of the direct and indirect reconstruction ways: (i) directly reconstructing the aberration phase; (ii) reconstructing the Zernike coefficients and then calculating the aberration phase. We verified the generalization ability and performance of the network for a single object and multiple objects. What’s more, we verified the correction effect for a turbulence pool and the feasibility for a real atmospheric turbulence environment.-
Key words:
- Wavefront sensing /
- Aberration correction /
- Deep learning
-
[1] Tyson R. Principles of adaptive optics. 0 ed.. Boca Raton: CRC Press; 2010. https://doi.org/10.1201/EBK1439808580. [2] Vorontsov MA, Carhart GW, Cohen M, Cauwenberghs G. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration. J Opt Soc Am A. 2000;17:1440. https://doi.org/10.1364/JOSAA.17.001440. [3] Platt BC, Shack R. History and Principles of Shack-Hartmann Wavefront Sensing. J Refract Surg. 2001;17:573–7. https://doi.org/10.3928/1081-597X-20010901-13. [4] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. https://doi.org/10.1038/nature14539. [5] Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: a brief review. Comput Intell Neurosci. 2018;2018:7068349. https://doi.org/10.1155/2018/7068349. [6] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv. 2015;1409:1556. https://arxiv.org/abs/1409.1556. [7] Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 779–88. https://doi.org/10.1109/CVPR.2016.91. [8] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv. 2015;1505:04597. https://arxiv.org/abs/1505.04597. [9] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv preprint arXiv. 2016;1511:00561. https://arxiv.org/abs/1511.00561. [10] Rivenson Y, Zhang Y, Günaydın H, Teng D, Ozcan A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl. 2018;7:17141–1. https://doi.org/10.1038/lsa.2017.141. [11] Wang K, Dou J, Kemao Q, Di J, Zhao J. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Opt Lett. 2019;44:4765. https://doi.org/10.1364/OL.44.004765. [12] Spoorthi GE, Gorthi S, Gorthi RKSS. PhaseNet:. A Deep Convolutional Neural Network for Two-Dimensional Phase Unwrapping. IEEE Signal Process Lett. 2018;26:54–8. https://doi.org/10.1109/LSP.2018.2879184. [13] Wang K, Li Y, Kemao Q, Di J, Zhao J. One-step robust deep learning phase unwrapping. Opt Express. 2019;27:15100. https://doi.org/10.1364/OE.27.015100. [14] Borhani N, Kakkava E, Moser C, Psaltis D. Learning to see through multimode fibers. Optica. 2018;5:960. https://doi.org/10.1364/OPTICA.5.000960. [15] Rahmani B, Loterie D, Konstantinou G, Psaltis D, Moser C. Multimode optical fiber transmission with a deep learning network. Light Sci Appl. 2018;7:69. https://doi.org/10.1038/s41377-018-0074-1. [16] Sinha A, Lee J, Li S, Barbastathis G. Lensless computational imaging through deep learning. Optica. 2017;4:1117. https://doi.org/10.1364/OPTICA.4.001117. [17] Wang K, Di J, Li Y, Ren Z, Kemao Q, Zhao J. Transport of intensity equation from a single intensity image via deep learning. Opt Lasers Eng. 2020;134:106233. https://doi.org/10.1016/j.optlaseng.2020.106233. [18] Liu J, Wang P, Zhang X, He Y, Zhou X, Ye H, et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt Express. 2019;27:16671. https://doi.org/10.1364/OE.27.016671. [19] Guo H, Xu Y, Li Q, Du S, He D, Wang Q, et al. Improved Machine Learning Approach for Wavefront Sensing Sensors. 2019;19:3533. https://doi.org/10.3390/s19163533. [20] Paine SW, Fienup JR. Machine learning for improved image-based wavefront sensing. Opt Lett. 2018;43:1235. https://doi.org/10.1364/OL.43.001235. [21] Li J, Zhang M, Wang D, Wu S, Zhan Y. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication. Opt Express. 2018;26:10494. https://doi.org/10.1364/OE.26.010494. [22] Jin Y, Zhang Y, Hu L, Huang H, Xu Q, Zhu X, et al. Machine learning guided rapid focusing with sensor-less aberration corrections. Opt Express. 2018;26:30162. https://doi.org/10.1364/OE.26.030162. [23] Ju G, Qi X, Ma H, Yan C. Feature-based phase retrieval wavefront sensing approach using machine learning. Opt Express. 2018;26:31767. https://doi.org/10.1364/OE.26.031767. [24] Nishizaki Y, Valdivia M, Horisaki R, Kitaguchi K, Saito M, Tanida J, et al. Deep learning wavefront sensing. Opt Express. 2019;27:240. https://doi.org/10.1364/OE.27.000240. [25] Ma H, Liu H, Qiao Y, Li X, Zhang W. Numerical study of adaptive optics compensation based on Convolutional Neural Networks. Opt Commun. 2019;433:283–9. https://doi.org/10.1016/j.optcom.2018.10.036. [26] Tian Q, Lu C, Liu B, Zhu L, Pan X, Zhang Q, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system. Opt Express. 2019;27:10765. https://doi.org/10.1364/OE.27.010765. [27] Andersen T, Owner-Petersen M, Enmark A. Neural networks for image-based wavefront sensing for astronomy. Opt Lett. 2019;44:4618. https://doi.org/10.1364/OL.44.004618. [28] Chen M, Jin X, Xu Z. Investigation of Convolution Neural Network-Based Wavefront Correction for FSO Systems. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an: IEEE; 2019, p. 1–6. https://doi.org/10.1109/WCSP.2019.8927850. [29] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 770–8. https://doi.org/10.1109/CVPR.2016.90. [30] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 2818–26. https://doi.org/10.1109/CVPR.2016.308. [31] Cohen G, Afshar S, Tapson J, van Schaik A. EMNIST: an extension of MNIST to handwritten letters. arXiv preprint arXiv. 2017;1702:05373. https://arxiv.org/abs/1702.05373. [32] Huang GB, Mattar M, Berg T, Learned-Miller E. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. 2008:15. https://hal.inria.fr/inria-00321923. [33] Deng J, Dong W, Socher R, Li L-J, Li K, Li Fei-Fei. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Recognition P. Miami: IEEE; 2009, p. 248–55. https://doi.org/10.1109/CVPR.2009.5206848.
点击查看大图
计量
- 文章访问数: 380
- HTML全文浏览量: 3
- PDF下载量: 115
- 被引次数: 0