留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deep learning wavefront sensing and aberration correction in atmospheric turbulence

Kaiqiang Wang MengMeng Zhang Ju Tang Lingke Wang Liusen Hu Xiaoyan Wu Wei Li Jianglei Di Guodong Liu Jianlin Zhao

Kaiqiang Wang, MengMeng Zhang, Ju Tang, Lingke Wang, Liusen Hu, Xiaoyan Wu, Wei Li, Jianglei Di, Guodong Liu, Jianlin Zhao. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX. doi: 10.1186/s43074-021-00030-4
引用本文: Kaiqiang Wang, MengMeng Zhang, Ju Tang, Lingke Wang, Liusen Hu, Xiaoyan Wu, Wei Li, Jianglei Di, Guodong Liu, Jianlin Zhao. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX. doi: 10.1186/s43074-021-00030-4
Kaiqiang Wang, MengMeng Zhang, Ju Tang, Lingke Wang, Liusen Hu, Xiaoyan Wu, Wei Li, Jianglei Di, Guodong Liu, Jianlin Zhao. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX. doi: 10.1186/s43074-021-00030-4
Citation: Kaiqiang Wang, MengMeng Zhang, Ju Tang, Lingke Wang, Liusen Hu, Xiaoyan Wu, Wei Li, Jianglei Di, Guodong Liu, Jianlin Zhao. Deep learning wavefront sensing and aberration correction in atmospheric turbulence[J]. PhotoniX. doi: 10.1186/s43074-021-00030-4

Deep learning wavefront sensing and aberration correction in atmospheric turbulence

doi: 10.1186/s43074-021-00030-4
基金项目: 

National Natural Science Foundation of China (61927810, 62075183).

Deep learning wavefront sensing and aberration correction in atmospheric turbulence

Funds: 

National Natural Science Foundation of China (61927810, 62075183).

  • 摘要: Deep learning neural networks are used for wavefront sensing and aberration correction in atmospheric turbulence without any wavefront sensor (i.e. reconstruction of the wavefront aberration phase from the distorted image of the object). We compared and found the characteristics of the direct and indirect reconstruction ways:(i) directly reconstructing the aberration phase; (ii) reconstructing the Zernike coefficients and then calculating the aberration phase. We verified the generalization ability and performance of the network for a single object and multiple objects. What's more, we verified the correction effect for a turbulence pool and the feasibility for a real atmospheric turbulence environment.
      关键词:
    •  / 
    •  / 
    •  
  • [1] Tyson R. Principles of adaptive optics. 0 ed.. Boca Raton: CRC Press; 2010. https://doi.org/10.1201/EBK1439808580.
    [2] Vorontsov MA, Carhart GW, Cohen M, Cauwenberghs G. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration. J Opt Soc Am A. 2000;17:1440. https://doi.org/10.1364/JOSAA.17.001440.
    [3] Platt BC, Shack R. History and Principles of Shack-Hartmann Wavefront Sensing. J Refract Surg. 2001;17:573–7. https://doi.org/10.3928/1081-597X-20010901-13.
    [4] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. https://doi.org/10.1038/nature14539.
    [5] Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E. Deep learning for computer vision: a brief review. Comput Intell Neurosci. 2018;2018:7068349. https://doi.org/10.1155/2018/7068349.
    [6] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv. 2015;1409:1556. https://arxiv.org/abs/1409.1556.
    [7] Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 779–88. https://doi.org/10.1109/CVPR.2016.91.
    [8] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. arXiv preprint arXiv. 2015;1505:04597. https://arxiv.org/abs/1505.04597.
    [9] Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. arXiv preprint arXiv. 2016;1511:00561. https://arxiv.org/abs/1511.00561.
    [10] Rivenson Y, Zhang Y, Günaydın H, Teng D, Ozcan A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl. 2018;7:17141–1. https://doi.org/10.1038/lsa.2017.141.
    [11] Wang K, Dou J, Kemao Q, Di J, Zhao J. Y-Net: a one-to-two deep learning framework for digital holographic reconstruction. Opt Lett. 2019;44:4765. https://doi.org/10.1364/OL.44.004765.
    [12] Spoorthi GE, Gorthi S, Gorthi RKSS. PhaseNet:. A Deep Convolutional Neural Network for Two-Dimensional Phase Unwrapping. IEEE Signal Process Lett. 2018;26:54–8. https://doi.org/10.1109/LSP.2018.2879184.
    [13] Wang K, Li Y, Kemao Q, Di J, Zhao J. One-step robust deep learning phase unwrapping. Opt Express. 2019;27:15100. https://doi.org/10.1364/OE.27.015100.
    [14] Borhani N, Kakkava E, Moser C, Psaltis D. Learning to see through multimode fibers. Optica. 2018;5:960. https://doi.org/10.1364/OPTICA.5.000960.
    [15] Rahmani B, Loterie D, Konstantinou G, Psaltis D, Moser C. Multimode optical fiber transmission with a deep learning network. Light Sci Appl. 2018;7:69. https://doi.org/10.1038/s41377-018-0074-1.
    [16] Sinha A, Lee J, Li S, Barbastathis G. Lensless computational imaging through deep learning. Optica. 2017;4:1117. https://doi.org/10.1364/OPTICA.4.001117.
    [17] Wang K, Di J, Li Y, Ren Z, Kemao Q, Zhao J. Transport of intensity equation from a single intensity image via deep learning. Opt Lasers Eng. 2020;134:106233. https://doi.org/10.1016/j.optlaseng.2020.106233.
    [18] Liu J, Wang P, Zhang X, He Y, Zhou X, Ye H, et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt Express. 2019;27:16671. https://doi.org/10.1364/OE.27.016671.
    [19] Guo H, Xu Y, Li Q, Du S, He D, Wang Q, et al. Improved Machine Learning Approach for Wavefront Sensing Sensors. 2019;19:3533. https://doi.org/10.3390/s19163533.
    [20] Paine SW, Fienup JR. Machine learning for improved image-based wavefront sensing. Opt Lett. 2018;43:1235. https://doi.org/10.1364/OL.43.001235.
    [21] Li J, Zhang M, Wang D, Wu S, Zhan Y. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication. Opt Express. 2018;26:10494. https://doi.org/10.1364/OE.26.010494.
    [22] Jin Y, Zhang Y, Hu L, Huang H, Xu Q, Zhu X, et al. Machine learning guided rapid focusing with sensor-less aberration corrections. Opt Express. 2018;26:30162. https://doi.org/10.1364/OE.26.030162.
    [23] Ju G, Qi X, Ma H, Yan C. Feature-based phase retrieval wavefront sensing approach using machine learning. Opt Express. 2018;26:31767. https://doi.org/10.1364/OE.26.031767.
    [24] Nishizaki Y, Valdivia M, Horisaki R, Kitaguchi K, Saito M, Tanida J, et al. Deep learning wavefront sensing. Opt Express. 2019;27:240. https://doi.org/10.1364/OE.27.000240.
    [25] Ma H, Liu H, Qiao Y, Li X, Zhang W. Numerical study of adaptive optics compensation based on Convolutional Neural Networks. Opt Commun. 2019;433:283–9. https://doi.org/10.1016/j.optcom.2018.10.036.
    [26] Tian Q, Lu C, Liu B, Zhu L, Pan X, Zhang Q, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system. Opt Express. 2019;27:10765. https://doi.org/10.1364/OE.27.010765.
    [27] Andersen T, Owner-Petersen M, Enmark A. Neural networks for image-based wavefront sensing for astronomy. Opt Lett. 2019;44:4618. https://doi.org/10.1364/OL.44.004618.
    [28] Chen M, Jin X, Xu Z. Investigation of Convolution Neural Network-Based Wavefront Correction for FSO Systems. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP), Xi’an: IEEE; 2019, p. 1–6. https://doi.org/10.1109/WCSP.2019.8927850.
    [29] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 770–8. https://doi.org/10.1109/CVPR.2016.90.
    [30] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Recognition P. (CVPR), Las Vegas: IEEE; 2016, p. 2818–26. https://doi.org/10.1109/CVPR.2016.308.
    [31] Cohen G, Afshar S, Tapson J, van Schaik A. EMNIST: an extension of MNIST to handwritten letters. arXiv preprint arXiv. 2017;1702:05373. https://arxiv.org/abs/1702.05373.
    [32] Huang GB, Mattar M, Berg T, Learned-Miller E. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. 2008:15. https://hal.inria.fr/inria-00321923.
    [33] Deng J, Dong W, Socher R, Li L-J, Li K, Li Fei-Fei. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Recognition P. Miami: IEEE; 2009, p. 248–55. https://doi.org/10.1109/CVPR.2009.5206848.
  • 加载中
计量
  • 文章访问数:  380
  • HTML全文浏览量:  3
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 录用日期:  2021-04-20
  • 网络出版日期:  2021-06-02

目录

    /

    返回文章
    返回