留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Subwavelength silicon photonics for onchip mode-manipulation

Chenlei Li Ming Zhang Hongnan Xu Ying Tan Yaocheng Shi Daoxin Dai

Chenlei Li, Ming Zhang, Hongnan Xu, Ying Tan, Yaocheng Shi, Daoxin Dai. Subwavelength silicon photonics for onchip mode-manipulation[J]. PhotoniX. doi: 10.1186/s43074-021-00032-2
引用本文: Chenlei Li, Ming Zhang, Hongnan Xu, Ying Tan, Yaocheng Shi, Daoxin Dai. Subwavelength silicon photonics for onchip mode-manipulation[J]. PhotoniX. doi: 10.1186/s43074-021-00032-2
Chenlei Li, Ming Zhang, Hongnan Xu, Ying Tan, Yaocheng Shi, Daoxin Dai. Subwavelength silicon photonics for on-chip mode-manipulation[J]. PhotoniX. doi: 10.1186/s43074-021-00032-2
Citation: Chenlei Li, Ming Zhang, Hongnan Xu, Ying Tan, Yaocheng Shi, Daoxin Dai. Subwavelength silicon photonics for on-chip mode-manipulation[J]. PhotoniX. doi: 10.1186/s43074-021-00032-2

Subwavelength silicon photonics for onchip mode-manipulation

doi: 10.1186/s43074-021-00032-2
基金项目: 

This work was supported by National Major Research and Development Program (No. 2018YFB2200200/2018YFB2200201), National Science Fund for Distinguished Young Scholars (61725503), National Natural Science Foundation of China (NSFC) (91950205, 61961146003), Zhejiang Provincial Natural Science Foundation (LZ18F050001, LD19F050001), and the Fundamental Research Funds for the Central Universities.

Subwavelength silicon photonics for on-chip mode-manipulation

Funds: 

This work was supported by National Major Research and Development Program (No. 2018YFB2200200/2018YFB2200201), National Science Fund for Distinguished Young Scholars (61725503), National Natural Science Foundation of China (NSFC) (91950205, 61961146003), Zhejiang Provincial Natural Science Foundation (LZ18F050001, LD19F050001), and the Fundamental Research Funds for the Central Universities.

  • 摘要: On-chip mode-manipulation is one of the most important physical fundamentals for many photonic integrated devices and circuits. In the past years, great progresses have been achieved on subwavelength silicon photonics for on-chip modemanipulation by introducing special subwavelength photonic waveguides. Among them, there are two popular waveguide structures available. One is silicon hybrid plasmonic waveguides (HPWGs) and the other one is silicon subwavelengthstructured waveguides (SSWGs). In this paper, we focus on subwavelength silicon photonic devices and the applications with the manipulation of the effective indices, the modal field profiles, the mode dispersion, as well as the birefringence. First, a review is given about subwavelength silicon photonics for the fundamental-mode manipulation, including high-performance polarization-handling devices, efficient mode converters for chip-fiber edge-coupling, and ultra-broadband power splitters. Second, a review is given about subwavelength silicon photonics for the higherorder-mode manipulation, including multimode converters, multimode waveguide bends, and multimode waveguide crossing. Finally, some emerging applications of subwavelength silicon photonics for on-chip mode-manipulation are discussed.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Agrell E, et al. Roadmap of optical communications. J Opt. 2016;18(6):063002.
    [2] Tkach RW. Scaling optical communications for the next decade and beyond. Bell Labs Tech J. 2010;14:3–9.
    [3] Eldada L. Advances in ROADM technologies and subsystems. Photonics North. International Society for Optics and Photonic. 2005; 5970:597022-597022-10.
    [4] Dong P, et al. Silicon photonic devices and integrated circuits. Nanophotonics. 2014;3:215–28.
    [5] Liang D, Bowers JE. Recent progress in lasers on silicon. Nat Photonics. 2010;4(8):511.
    [6] Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express. 2009;17(19):16646–53.
    [7] Guan X, Wu H, Dai D. Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front Optoelectronics. 2014;7(3):300–19.
    [8] Dai D, Wu H, Zhang W. Utilization of field enhancement in plasmonic waveguides for subwavelength light-guiding, polarization handling, heating, and optical sensing. Materials. 2015;8(10):6772–91.
    [9] Dai D, et al. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides. Opt Express. 2011;19(24):23671–82.
    [10] Dai D, et al. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express. 2011;19(14):12925–36.
    [11] Cheben P, et al. Subwavelength integrated photonics. Nature. 2018;560(7720):565–72.
    [12] Wang J, Glesk I, Chen LR. Subwavelength grating devices in silicon photonics. Sci Bull. 2016;61(11):879–88.
    [13] Donzella V, et al. Sub-wavelength grating components for integrated optics applications on SOI chips. Opt Express. 2014;22(17):21037–50.
    [14] Bogaerts W, et al. A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires. Opt Express. 2017;15(4):1567–78.
    [15] Barwicz T, et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat Photonics. 2007;1(1):57–60.
    [16] Dai D, et al. Polarization management for silicon photonic integrated circuits. Laser Photonics Rev. 2013;7(3):303–28.
    [17] Fukuda H, et al. Silicon photonic circuit with polarization diversity. Opt Express. 2008;16(7):4872–80.
    [18] Pfau T, et al. Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s. IEEE Photon Technol Lett. 2007;19(24):1988–90.
    [19] Dong P, et al. Monolithic silicon photonic integrated circuits for compact 100Gb/s coherent optical receivers and transmitters. IEEE J Select Top Quantum Electron. 2014;20(4):150–7.
    [20] Feng L, et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat Commun. 2016;7(1):1–7.
    [21] Zhou Z, Bai B, Liu L. Silicon on-chip PDM and WDM technologies via plasmonics and subwavelength grating. IEEE J Select Top Quantum Electron. 2018;25(3):1–13.
    [22] Li C, Liu D, Dai D. Multimode silicon photonics. Nanophotonics. 2018;8(2):227–47.
    [23] Li C, et al. Silicon-based on-chip hybrid (de) multiplexers. SCIENCE CHINA Inf Sci. 2018;61(8):080407.
    [24] Xu H, Shi Y. On-chip silicon TE-pass polarizer based on asymmetrical directional couplers. IEEE Photon Technol Lett. 2017;29(11):861–4.
    [25] Dai D, Wang Z, Julian N, Bowers JE. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides. Opt Express. 2010;18:27404–15.
    [26] Xiong Y, et al. High ER and broadband silicon TE-pass polarizer using subwavelength grating index engineering. IEEE Photonics J. 2015;7(5):1–7.
    [27] Chi J, et al. High-performance transverse magnetic mode-pass polarizer based on silicon nitride–silicon subwavelength grating waveguide for mid-infrared wavelengths. Appl Phys Express. 2018;11(4):042005.
    [28] Guan X, et al. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide. Opt Lett. 2014;39(15):4514–7.
    [29] Ni B, Xiao J. Subwavelength-grating-based compact and broadband TE-pass polarizer for slot waveguides on a SOI platform. JOSA B. 2019;36(8):2126–33.
    [30] Zafar H, et al. Compact silicon TE-pass polarizer using adiabatically-bent fully-etched waveguides. Opt Express. 2018;26(24):31850–60.
    [31] Xu H, Dai D, Shi Y. Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth. Photonics Res. 2019;7(12):1432–9.
    [32] Bai B, et al. Low loss, compact TM-pass polarizer based on hybrid plasmonic grating. IEEE Photon Technol Lett. 2017;29(7):607–10.
    [33] Abd-Elkader A, et al. Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers. JOSA B. 2019;36(3):652–61.
    [34] Xu Z, Sun X. Ultra-broadband TE-pass polarizer based on hybrid plasmonic-assisted contra-directional couplers. JOSA B. 2020;37(2):251–6.
    [35] Zhang J, Cassan E, Zhang X. Wideband and compact TE-pass/TM-stop polarizer based on a hybrid plasmonic Bragg grating for silicon photonics. J Lightwave Technol. 2014;32(7):1383–6.
    [36] Azzam S, Obayya S. Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform. Opt Lett. 2015;40(6):1061–4.
    [37] Guan X, et al. Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating. In: Proceedings of Asia Communications and Photonics Conference. Beijing, 2013; ATh4A.
    [38] Guan X, et al. Ultra-compact and ultrabroadband TE-pass polarizer with a silicon hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics West. San Francisco. 2014; 8988
    [39] Alam M, et al. Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Appl Opt. 2011;50(15):2294–8.
    [40] Alam M, et al. Compact and silicon-on insulator-compatible hybrid plasmonic TE-pass polarizer. Opt Lett. 2012;37(1):55–7.
    [41] Huang Y, et al. CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Opt Express. 2013;21(10):12790–6.
    [42] Sun X, et al. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Opt Lett. 2012;37(23):4814–6.
    [43] Ni B, Xiao J. Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides. IEEE Photon Technol Lett. 2018;30(5):463–6.
    [44] Huang T. TE-pass polarizer based on epsilon-near-zero material embedded in a slot waveguide. IEEE Photon Technol Lett. 2016;28(20):2145–8.
    [45] Xu Y, Xiao J. A compact TE-pass polarizer for silicon-based slot waveguides. IEEE Photon Technol Lett. 2015;27(19):2071–4.
    [46] Azzam S, et al. Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform. IEEE Photon TechnolLett. 2014;26(16):1633–6.
    [47] Ni B, Xiao J. A compact silicon-based TE-pass polarizer using three-guide directional couplers. IEEE Photon Technol Lett. 2017;29(19):1631–4.
    [48] Sun X, Mojahedi M, Aitchison J. Hybrid plasmonic waveguide based ultra-low insertion loss transverse electric-pass polarizer. Opt Lett. 2016;41:4020–3.
    [49] Azzam S, Obayya S. Titanium nitride-based CMOS compatible TE-pass and TM-pass plasmonic polarizers. IEEE Photon Technol Lett. 2016;28(3):367–70.
    [50] Alam M, Aitchison J, Mojahedi M. Compact and siliconon-insulator-compatible hybrid plasmonic TE-pass polarizer. Opt Lett. 2012;37:55–7.
    [51] Hameed M, Zaghloul R, Azzam S, Obayya S. Ultrashort hybrid plasmonic transverse electric pass polarizer for siliconon-insulator platform. Opt Eng. 2017;56:017107.
    [52] Ying Z, et al. Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide. IEEE Photon Technol Lett. 2015;27(2):201–4.
    [53] Ng T, Khan M, Al-Jabr A, Ooi B. Analysis of CMOS compatible Cu-based TM-pass optical polarizer. IEEE Photon Technol Lett. 2012;24(9):724–6.
    [54] Xu Y, Xiao J. Design and numerical study of a compact, broadband and low-loss TE-pass polarizer using transparent conducting oxides. Opt Express. 2016;24:15373–82.
    [55] Lu Z, et al. Wideband silicon photonic polarization beam splitter based on point-symmetric cascaded broadband couplers. Opt Express. 2015;23(23):29413–22.
    [56] Dai D, Bowers J. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Opt Express. 2011;19(19):18614–20.
    [57] Wang J, et al. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Opt Lett. 2013;38(1):4–6.
    [58] Chen S, Wu H, Dai D. High extinction-ratio compact polarization beam splitter on silicon. Electron Lett. 2016;52(12):1043–5.
    [59] Hsu C, et al. 8.13 μm in length and CMOS compatible polarization beam splitter based on an asymmetrical directional coupler. Appl Opt. 2016;55(12):3313–8.
    [60] Wu H. and Dai D. Novel high-performance polarization beam splitter on silicon. Asia Communications and Photonics Conference (ACP). 2016; IEEE.
    [61] Wu H, Tan Y, Dai D. Ultra-broadband high-performance polarizing beam splitter on silicon. Opt Express. 2017;25(6):6069–75.
    [62] Wang X, et al. Ultra-small and fabrication-tolerant silicon polarization beam splitter using sharp bent directional coupler. IEEE Photonics J. 2018;10(5):1–7.
    [63] Huang T, et al. A slot-waveguide-based polarization beam splitter assisted by epsilon-near-zero material. Photonics Nanostructures Fundam Appl. 2019;33:42–7.
    [64] Fu P, et al. Optimization for ultrabroadband polarization beam splitters using a genetic algorithm. IEEE Photonics J. 2018;11(1):1–11.
    [65] Li C, Dai D. Compact polarization beam splitter for silicon photonic integrated circuits with a 340-nm-thick silicon core layer. Opt Lett. 2017;42(21):4243–6.
    [66] Chia-Chien H. Numerical investigations of an ultra-compact polarization beam splitter based on augmented low-index guiding and subwavelength grating structures. Sci Rep. 2018;8(1):1–11.
    [67] Bai B, Yang F, Zhou Z. Demonstration of an on-chip TE-pass polarizer using a silicon hybrid plasmonic grating. Photonics Res. 2019;7(3):289–93.
    [68] Zhang F, et al. Ultra-broadband and compact polarizing beam splitter in silicon photonics. OSA Continuum. 2020;3(3):560–7.
    [69] Xie Y, et al. Combination of surface plasmon polaritons and subwavelength grating for polarization beam splitting. Plasmonics. 2020;15(1):235–41.
    [70] Xu Z, Lyu T, Sun X. Interleaved subwavelength gratings strip waveguide-based TM pass polarizer on SOI platform. IEEE Photonics J. 2020;12(2):4900110.
    [71] Chen Y, Xiao J. Compact silicon-based polarization beam splitter using directional couplers assisted with subwavelength gratings. Opt Eng. 2020;59(1):017101.
    [72] Xie Y, et al. Bloch supermode interaction for high-performance polarization beam splitting. Opt Eng. 2019;58(9):095102.
    [73] Shen B, et al. An integrated-nanophotonics polarization beamsplitter with 2.4× 2.4 μm2 footprint. Nat Photonics. 2015;9(6):378–82.
    [74] Xu L, et al. Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform. J Lightwave Technol. 2019;37(4):1231–40.
    [75] Li C, Zhang M, Bowers JE, Dai D. Ultra-broadband polarization beam splitter with silicon subwavelength-grating waveguides. Opt Lett. 2020;45(8):2259–62.
    [76] Kim Y, et al. High-extinction-ratio directional-coupler-type polarization beam splitter with a bridged silicon wire waveguide. Opt Lett. 2018;43(14):3241–4.
    [77] Tian Y, et al. Compact polarization beam splitter with a high ER over S+ C+ L band. Opt Express. 2019;27(2):999–1009.
    [78] Huang Y, et al. Polarization beam splitter based on cascaded step-size multimode interference coupler. Opt Eng. 2013;52(7):077103.
    [79] Zhang Y, et al. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Opt Express. 2016;24(6):6586–93.
    [80] Hu T, et al. A compact ultrabroadband polarization beam splitter utilizing a hybrid plasmonic Y-branch. IEEE Photonics J. 2016;8(4):1–9.
    [81] Xu Y, et al. Compact and high ER polarization beam splitter using subwavelength grating couplers. Opt Lett. 2016;41(4):773–6.
    [82] Liu L, Deng Q, Zhou Z. Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating. Opt Lett. 2016;41(21):5126–9.
    [83] Xu H, Dai D, Shi Y. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials. Laser Photonics Rev. 2019;13(4):1800349.
    [84] Xu D, et al. Silicon photonic integration platform—Have we found the sweet spot? IEEE J Select Top Quantum Electron. 2014;20(4):189–205.
    [85] Keyvaninia S, et al. Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser. Opt Express. 2013;21(3):3784–92.
    [86] Xiao X, et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt Express. 2013;21(4):4116–25.
    [87] Lou F, Dai D, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Opt Lett. 2012;37(16):3372–4.
    [88] Guan X, et al. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Opt Lett. 2013;38(16):3005–8.
    [89] Guan X, et al. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Opt Lett. 2014;3(2):259–62.
    [90] Wu H, Guan X, and Dai D. Novel silicon polarization beam splitter with a horizontal hybrid nanoplasmonic waveguide. Asia Communications and Photonics Conference. Optical Society of America, 2014.
    [91] Dai D, Wu H. Realization of a compact polarization splitter-rotator on silicon. Opt Lett. 2016;41(10):2346–9.
    [92] Xu H, Shi Y. Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides. Opt Lett. 2017;42(4):771–4.
    [93] Liu L, Ding Y, Yvind K, Hvam J. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Opt Express. 2011;19(13):12646–51.
    [94] Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Opt Express. 2012;20(18):20021–7.
    [95] Xu Y, Xiao J. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially etched subwavelength grating coupler. Sci Rep. 2016;6(1):27949.
    [96] Xu Y, Xiao J. Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides. Appl Opt. 2016;55(3):611–8.
    [97] Tan K, Huang Y, Lo G-Q, Lee C, Yu C. Compact highly-efficient polarization splitter and rotator based on 90° bends. Opt Express. 2016;24(13):14506–12.
    [98] Xiong Y, Xu D, Schmid J, Cheben P, Janz S, Ye W. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Opt Express. 2014;22(14):17458–65.
    [99] Wang Z, Dai D. Ultrasmall Si-nanowire-based polarization rotator. J Opt Soc Am B. 2008;25(5):747.
    [100] Aamer M, Gutierrez A, Brimont A, Vermeulen D, Roelkens G, Fedeli J, et al. CMOS compatible silicon-on-insulator polarization rotator based on symmetry breaking of the waveguide cross section. IEEE Photon Technol Lett. 2012;24(22):2031–4.
    [101] Chen L, Doerr C, Chen Y. Compact polarization rotator on silicon for polarization-diversified circuits. Opt Lett. 2011;36(4):469–71.
    [102] Xu H, Shi Y. Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands. Opt Express. 2019;27(4):5588–97.
    [103] Wang Y, et al. Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform. IEEE Photonics J. 2016;8(6):1–9.
    [104] Dai D, Tang Y, Bowers J. E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt Express. 2012;20(12):13425–39.
    [105] Xiong Y, et al. Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt Lett. 2014;39(24):6931–4.
    [106] Ma M, et al. Sub-wavelength grating-assisted polarization splitter-rotators for silicon-on-insulator platforms. Opt Express. 2019;27(13):17581–91.
    [107] Yin Y, Li Z, Dai D. Ultra-broadband polarization splitter-rotator based on the mode evolution in a dual-core adiabatic taper. J Lightwave Technol. 2017;35(11):2227–33.
    [108] Sacher W, et al. Polarization rotator-splitters in standard active silicon photonics platforms. Opt Express. 2014;22(4):3777–86.
    [109] Dai D. Advanced passive silicon photonic devices with asymmetric waveguide structures. Proc IEEE. 2018;106(12):2117–43.
    [110] Chang W, et al. Inverse design and demonstration of ultracompact silicon polarization rotator. 2019 Optical fiber communications conference and exhibition (OFC). IEEE, 2019.
    [111] Hu T, et al. A polarization splitter and rotator based on a partially etched grating-assisted coupler. IEEE Photon Technol Lett. 2016;28(8):911–4.
    [112] Liu L, Deng Q, Zhou Z. Subwavelength-grating-assisted broadband polarization-independent directional coupler. Opt Lett. 2016;41(7):1648–51.
    [113] Velasco, et al. Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide. Opt Lett. 2012;37(3):365–7.
    [114] Gao L, et al. On-chip plasmonic waveguide optical waveplate. Sci Rep. 2015;5(1):1–6.
    [115] Xie A, et al. Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide. Opt Express. 2015;23(4):3960–70.
    [116] Sangsik K, Qi M. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides. Sci Rep. 2015;5:18378.
    [117] Bai B, Liu L, Zhou Z. Ultracompact, high ER polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling. Opt Lett. 2017;42(22):4752–5.
    [118] Xiong Y, et al. Robust silicon waveguide polarization rotator with an amorphous silicon overlayer. IEEE Photonics J. 2014;6(2):1–8.
    [119] Chang Y, Yu T. Photonic-quasi-TE-to-hybrid-plasmonic-TM polarization mode converter. J Lightwave Technol. 2015;33(20):4261–7.
    [120] Caspers J, et al. Experimental demonstration of an integrated hybrid plasmonic polarization rotator. Opt Lett. 2013;38(20):4054–7.
    [121] Komatsu M, Saitoh K, and Koshiba M. Design of ultra-small mode-evolution type polarization rotator based on surface plasmon polariton. Integrated Photonics Research, Silicon and Nanophotonics. Optical Society of America, 2012.
    [122] Chen S, Shi Y, He S, Dai D. Low-loss and broadband 2 x 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers. Opt Lett. 2016;41(4):836–9.
    [123] Kwong D, Hosseini A, Zhang Y, Chen R. 1 × 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane. Appl Phys Lett. 2011;99(5):051104.
    [124] Chen S, Shi Y, He S, Dai D. Compact eight-channel thermally reconfigurable optical add/drop multiplexers on silicon. IEEE Photon Technol Lett. 2016;28(17):1874–7.
    [125] He M, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics. 2019;13(5):359–64.
    [126] Yamada H, Tao C, Ishida S, Arakawa Y. Optical directional coupler based on Si-wire waveguides. IEEE Photon Technol Lett. 2005;17(3):585–7.
    [127] Soldano L, Pennings E. Optical multi-mode interference devices based on self-imaging: principles and applications. J Lightwave Technol. 1995;13(4):615–27.
    [128] Zhang Y, et al. A compact and low loss Y-junction for submicron silicon waveguide. Opt Express. 2013;21(1):1310–6.
    [129] Yun H, Shi W, Wang Y, Chrostowski L, Jaeger N. 2x2 adiabatic 3-dB coupler on silicon-on-insulator rib waveguides. Proc SPIE. 2013;8915:89150V.
    [130] Xu L, et al. Compact high-performance adiabatic 3-dB coupler enabled by subwavelength grating slot in the silicon-on-insulator platform. Opt Express. 2018;26(23):29873–85.
    [131] Yun H, Chrostowski L, Jaeger N. Ultra-broadband 2 x 2 adiabatic 3 dB coupler using subwavelength-grating-assisted silicon-on-insulator strip waveguides. Opt Lett. 2018;43(8):1935–8.
    [132] Takagi A, Jinguji K, Kawachi M. Design and fabrication of broad-band silica-based optical waveguide couplers with asymmetric structure. IEEE J Quantum Electron. 1992;28(4):848–55.
    [133] Morino H, Maruyama T, Iiyama K. Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler. J Lightwave Technol. 2014;32(12):2188–92.
    [134] Hsu S. Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms. J Opt Soc Am B. 2010;27(5):941–7.
    [135] Alam M, Caspers J, Aitchison J, Mojahedi M. Compact low loss and broadband hybrid plasmonic directional coupler. Opt Express. 2013;21(13):16029–34.
    [136] Lu Z, et al. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt Express. 2015;23(3):3795–806.
    [137] Gupta R, Chandran S, Das B. Wavelength-independent directional couplers for integrated silicon photonics. J Lightwave Technol. 2017;35(22):4916–23.
    [138] Halir R, et al. Colorless directional coupler with dispersion engineered sub-wavelength structure. Opt Express. 2012;20(12):13470.
    [139] Wang Y, et al. Compact broadband directional couplers using subwavelength gratings. IEEE Photonics J. 2016;8(3):1–8.
    [140] Ye C, Dai D. Ultra-compact broadband 2×2 3dB power splitter using subwavelength-grating-assisted asymmetric directional coupler. IEEE J Lightw Technol. 2020;38:2370–5.
    [141] Lu L, Zhang M, and Liu D. Polarization insensitive 3-dB directional coupler based on sub-wavelength grating structure. Asia Communications and Photonics Conference. Optical Society of America, 2015.
    [142] Benedikovic D, et al. Sub-decibel silicon grating couplers based on L-shaped waveguides and engineered subwavelength metamaterials. Opt Express. 2019;27(18):26239–50.
    [143] Luque G, et al. An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials. Laser Photonics Rev. 2019;13(11):1900172.
    [144] Xu P, et al. SiN x–Si interlayer coupler using a gradient index metamaterial. Opt Lett. 2019;44(5):1230–3.
    [145] Papes M, et al. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. Opt Express. 2016;24(5):5026–38.
    [146] Ortega-Moñux A, et al. Disorder effects in subwavelength grating metamaterial waveguides. Opt Express. 2017;25(11):12222–36.
    [147] Barwicz T. An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides. In: Proc. Opt. Fiber Commun. Conf., 2015; Paper Th3F.3.
    [148] Barwicz T, Kamlapurkar S, Martin Y, Bruce R, and Engelmann S. A silicon metamaterial chip-to-chip coupler for photonic flip-chip applications. In Proc. Opt. Fiber Commun. Conf., 2017, Paper Th2A.39.
    [149] Picard M, Painchaud Y, Latrasse C, Larouche C, Pelletier F, and Poulin M. Novel spot-size converter for optical fiber to sub-μm silicon waveguide coupling with low loss, low wavelength dependence and high tolerance to alignment. in Proc. Eur. Conf. Opt. Commun. (ECOC), 2015;1–3.
    [150] Zhou W, et al. Subwavelength engineering in silicon photonic devices. IEEE J Select Top Quantum Electron. 2019;25(3):1–13.
    [151] Taillaert D, et al. An out-of-plane grating coupler for efficient buttcoupling between compact planar waveguides and single-mode fibers. IEEE J Quantum Electron. 2002;38(7):949–55.
    [152] Topley R, et al. Locally erasable couplers for optical device testing in silicon on insulator. J Lightwave Technol. 2014;32(12):2248–53.
    [153] Chen X, et al. Post-fabrication phase trimming of Mach–Zehnder interferometers by laser annealing of germanium implanted waveguides. Photon Res. 2017;5(6):578–82.
    [154] Milosevic M, et al. Ion implantation in silicon for trimming the operating wavelength of ring resonators. IEEE J Sel Topics Quantum Electron. 2018;24(4):8200107.
    [155] Li C, et al. Silicon photonics packaging with lateral fiber coupling to apodized grating coupler embedded circuit. Opt Express. 2014;22(20):24235–40.
    [156] Tong Y, Zhou W, Tsang HK. Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm DUV lithography. Opt Lett. 2018;43(23):5709–12.
    [157] Taillaert D, et al. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photon Technol Lett. 2003;15(9):1249–51.
    [158] Watanabe T, Ayata M, Koch U, Fedoryshyn Y, Leuthold J. Perpendicular grating coupler based on a blazed antiback-reflection structure. J Lightwave Technol. 2017;35(21):4663–9.
    [159] Chen X, Li C, Tsang HK. Fabrication-tolerant waveguide chirped grating coupler for coupling to a perfectly vertical optical fiber. IEEE Photon Technol Lett. 2008;20(23):1914–6.
    [160] Roelkens G, Van Thourhout D, Baets R. Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure. Opt Express. 2007;15(16):10091–6.
    [161] Xu L, Chen X, Li C, Tsang HK. Bi-wavelength two-dimensional chirped grating couplers for low cost WDM PON transceivers. Opt Commun. 2011;284(8):2242–4.
    [162] Piggott A, et al. Inverse design and implementation of a wavelength demultiplexing grating coupler. Sci Rep. 2014;4:7210.
    [163] Ding Y, et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express. 2015;23(3):3292–8.
    [164] Chen X, Tsang HK. Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers. IEEE Photon J. 2009;1(3):184–90.
    [165] Chen X, Xu K, Cheng Z, Fung C, Tsang HK. Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers. Opt Lett. 2012;37(17):3483–5.
    [166] Cheng Z, Chen X, Wong CY, Xu K, Tsang HK. Apodized focusing subwavelength grating couplers for suspended membrane waveguides. Appl Phys Lett. 2012;101(10):101104.
    [167] Cheng Z, Chen X, Wong CY, Xu K, Tsang HK. Broadband focusing grating couplers for suspended-membrane waveguides. Opt Lett. 2012;37(24):5181–3.
    [168] Cheng Z, et al. Focusing subwavelength grating coupler for midinfrared suspended membrane waveguide. Opt Lett. 2012;37(7):1217–9.
    [169] Cheng Z, Tsang HK. Experimental demonstration of polarization insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt Lett. 2014;39(7):2206–9.
    [170] Cheng Z, Chen X, Wong CY, Xu K, Tsang HK. Midinfrared suspended membrane waveguide and ring resonator on siliconon-insulator. IEEE Photon J. 2012;4(5):1510–9.
    [171] Cheben P, et al. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt Express. 2006;14(11):4695–702.
    [172] Cheben P, et al. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt Lett. 2010;35(15):2526–8.
    [173] Cheben P, et al. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Opt Express. 2015;23(17):22553–63.
    [174] Dai D, et al. 10-channel mode (de) multiplexer with dual polarizations. Laser Photonics Rev. 2018;12(1):1700109.
    [175] Uematsu T, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Lightwave Technol. 2012;30(15):2421–6.
    [176] Driscoll J, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett. 2013;38(11):1854–6.
    [177] Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express. 2013;21(21):25113–9.
    [178] Frellsen L, et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides. Opt Express. 2016;24(15):16866–73.
    [179] Xing J, et al. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Opt Lett. 2013;38(17):3468–70.
    [180] Li C, Dai D. Low-loss and low-crosstalk multi-channel mode (de) multiplexer with ultrathin silicon waveguides. Opt Lett. 2017;42(12):2370–3.
    [181] Guo D, Chu T. Silicon mode (de) multiplexers with parameters optimized using shortcuts to adiabaticity. Opt Express. 2017;25(8):9160–70.
    [182] Sun C, et al. Silicon mode multiplexer processing dual-path mode-division multiplexing signals. Opt Lett. 2016;41(23):5511–4.
    [183] Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Opt Express. 2005;13(23):9381–7.
    [184] Ding Y, et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Opt Express. 2013;21(8):10376–82.
    [185] Dai D, Wang J, Shi Y. Silicon mode (de) multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett. 2013;38(9):1422–4.
    [186] Qiu H, et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt Express. 2013;21:17904–11.
    [187] He Y, Zhang Y, Zhu Q, An S, et al. Silicon high-order mode (De)multiplexer on single polarization. IEEE/OSA J Lightw Technol. 2018;36(24):5746–53.
    [188] Mehrabi K, Zarifkar A. Ultracompact and ultrabroadband mode division multiplexer based on an Au nanocube array assisted directional coupler. Appl Opt. 2020;59(5):1286–92.
    [189] Jiang W, et al. On-chip silicon dual-mode multiplexer via a subwavelength grating-based directional coupler and a mode blocker. Appl Opt. 2019;58(33):9290–6.
    [190] Dave U, and Lipson M. Efficient conversion to very high order modes in silicon waveguides. CLEO: Science and Innovations. Optical Society of America, 2019.
    [191] Li C, Ye C, and Dai D. SWG-assisted multimode add-drop multiplexer. (to be submitted)
    [192] Jiang W, et al. Ultrabroadband and fabrication-tolerant mode (de) multiplexer using subwavelength structure. JOSA B. 2019;36(11):3125–32.
    [193] Jiang W, Wang X. Ultra-broadband mode splitter based on phase controlling of bridged subwavelength grating. J Lightwave Technol. 2020;99:1–1.
    [194] Park J, Yeo D, Shin S. Variable optical mode generator in a multimode waveguide. IEEE Photon Technol Lett. 2006;18(20):2084–6.
    [195] Huang Y, Xu G, Ho S. An ultracompact optical mode order converter. IEEE Photon Technol Lett. 2006;18(21):2281–3.
    [196] Chen D, et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt Express. 2015;23:11152–9.
    [197] Molesky S, et al. Inverse design in nanophotonics. Nat Photonics. 2018;12(11):659.
    [198] Liu V, et al. Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Opt Express. 2012;20(27):28388–97.
    [199] Lu J, Vuckovic J. Nanophotonic computational design. Opt Express. 2013;21(11):13351–67.
    [200] Shen B, Polson R, Menon R. Integrated digital metamaterials enable ultra-compact optical diodes. Opt Express. 2015;23(8):10847–55.
    [201] Yu Z, Cui H, Sun X. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt Lett. 2017;42(16):3093–6.
    [202] Frandsen L, et al. Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material. Opt Express. 2014;22(7):8525–32.
    [203] Frellsen L, Ding Y, Sigmund O, and Frandsen L. Topology-optimized mode converter in a silicon-on-insulator photonic wire waveguide. CLEO: Science and Innovations. Optical Society of America, 2016; STh3E. 4.
    [204] Jia H, et al. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device. ACS Photon. 2018;5:1833–8.
    [205] Ohana D, et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 2016;16(12):7956–61.
    [206] Li Z, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat Nanotechnol. 2017;12(7):675.
    [207] Luque-González J, et al. Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Opt Lett. 2018;43(19):4691–4.
    [208] Yao C, et al. Multi-mode conversion via two-dimensional refractive-index perturbation on a silicon waveguide. arXiv preprint arXiv. 2019; 1911.10786.
    [209] Wang T, et al. Ultra-compact reflective mode converter based on a silicon subwavelength structure. Appl Opt. 2020;59(9):2754–8.
    [210] Cheng Z, et al. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt Express. 2019;27(23):34434–41.
    [211] González-Andrade D, et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 2018;10(2):1–10.
    [212] Chen R, et al. Ultra-compact hybrid plasmonic mode convertor based on unidirectional eigenmode expansion. Opt Lett. 2020;45(4):803–6.
    [213] Wang H, Zhang Y, He Y, Zhu Q, Sun L, Su Y. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv Opt Mater. 2019;7(4):1801191.
    [214] Guo J, et al. Extremely compact guided-mode exchangers on silicon. Laser Photonics Rev. 2020;202000058.
    [215] Luo Y, Yu Y, Ye M, Sun C, Zhang X. Integrated dual-mode 3 dB power coupler based on tapered directional coupler. Sci Rep. 2016;6:23516.
    [216] Xu H, Shi Y. Ultra-broadband dual-mode 3 dB power splitter based on a Y-junction assisted with mode converters. Opt Lett. 2016;41(21):5047–50.
    [217] Han L, Kuo B, Alic N, Radic S. Ultra-broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y-branch. Opt Express. 2018;26(11):14800–9.
    [218] Chang W, et al. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter. Opt Express. 2018;26(18):24135–44.
    [219] Xie H, et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure. IEEE Photon Technol Lett. 2020;32(6):341–4.
    [220] Ye C, Dai D. Broadband dual-mode 2×2 3 dB power splitter based on multimode interference couplers with shallowly etched subwavelength gratings. Appl Opt. 2020;59:7308–12.
    [221] Erol A, Sözüer H. High transmission through a 90° bend in a polarization-independent single-mode photonic crystal waveguide. Opt Express. 2015;23(25):32690–5.
    [222] Shen B, Polson R, Menon R. Metamaterial-waveguide bends with effective bend radius< λ 0/2. Opt Lett. 2015;40(24):5750–3.
    [223] Fujisawa T, et al. Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale PICs. Opt Express. 2017;25(8):9150–9.
    [224] Cherchi M, et al. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. Opt Express. 2013;21(15):17814–23.
    [225] Yuanyuan C, et al. Analysis on influencing factors of bend loss of silicon-on-insulator waveguides. J Semicond. 2005;26:216.
    [226] Gabrielli L, et al. On-chip transformation optics for multimode waveguide bends. Nat Commun. 2012;3:1217.
    [227] Dai D. Multimode optical waveguide enabling microbends with low inter-mode crosstalk for mode-multiplexed optical interconnects. Opt Express. 2014;22:27524–34.
    [228] Dai D, Wang J, He S. Silicon multimode photonic integrated devices for on-chip mode-division-multiplexed optical interconnects. Prog Electromagn Res. 2013;143:773–819.
    [229] Wu X, et al. Low crosstalk bent multimode waveguide for on-chip mode-division multiplexing interconnects. //CLEO: QELS_Fundamental Science. Optical Society of America, 2018; JW2A. 66.
    [230] Jiang X, Wu H, Dai D. Low-loss and low-crosstalk multimode waveguide bend on silicon. Opt Express. 2018;26:17680–9.
    [231] Sun C, et al. A novel sharply bent silicon multimode waveguide with ultrahigh mode ER. Optical Fiber Communications Conference and Exhibition. IEEE, 2016.
    [232] Sun C, Yu Y, Chen G, Zhang X. Ultra-compact bent multimode silicon waveguide with ultralow inter-mode crosstalk. Opt Lett. 2017;42(15):3004–7.
    [233] Xu H, Shi Y. Ultra-sharp multi-mode waveguide bending assisted with metamaterial-based mode converters. Laser Photonics Rev. 2018;12:1700240.
    [234] Teng M, et al. A 3-micron-radius bend for SOI TE0/TE1 multiplexing //CLEO: applications and technology. Optical Society of America, 2018: JW2A. 13.
    [235] Chang W, et al. Ultra-compact silicon multi-mode waveguide bend based on subwavelength asymmetric Y-junction. Optical Fiber Communication Conference. Optical Society of America 2018: Tu3A. 1
    [236] Liu Y, et al. Very sharp adiabatic bends based on an inverse design. Opt Lett. 2018;43(11):2482–5.
    [237] Wu H, et al. Ultra-sharp multimode waveguide bends with subwavelength gratings. Laser Photonics Rev. 2019;13(2):1800119.
    [238] Xie H, et al. Demonstration of an ultra-compact bend for four modes based on pixelated meta-structure. Optical Fiber Communication Conference. Optical Society of America, 2020.
    [239] Wang Y, Dai D. Ultra-sharp multimode waveguide bends with dual polarizations. J Lightwave Technol. 2020;38(15):3994–9.
    [240] Chen H, Poon A. Low-loss multimode-interference-based crossings for silicon wire waveguides. IEEE Photon Technol Lett. 2006;18(21):2260–2.
    [241] Bogaerts W, et al. Low-loss, low-cross-talk crossings for silicon-on-insulator nanophotonic waveguides. Opt Lett. 2007;32(19):2801–3.
    [242] Kim S-H, et al. Low-crosstalk waveguide crossing based on 1×1 MMI structure of silicon-wire waveguide. 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR). IEEE, 2013.
    [243] Liu Y, et al. Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. Opt Lett. 2014;39(2):335–8.
    [244] Zhang Y, et al. Ultralow-loss silicon waveguide crossing using Bloch modes in index-engineered cascaded multimode-interference couplers. Opt Lett. 2013;38(18):3608–11.
    [245] Bock P, et al. Subwavelength grating crossings for silicon wire waveguides. Opt Express. 2010;18(15):16146–55.
    [246] Sun C, Yu Y, Zhang X. Ultra-compact waveguide crossing for a mode-division multiplexing optical network. Opt Lett. 2017;42(23):4913–6.
    [247] Chang W, et al. An ultracompact multimode waveguide crossing based on subwavelength asymmetric Y-junction. IEEE Photonics J. 2018;10(4):1–8.
    [248] Chang W, et al. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers. Photonics Res. 2018;6(7):660–5.
    [249] Xu H, Shi Y. Dual-mode waveguide crossing utilizing taper-assisted multimode-interference couplers. Opt Lett. 2016;41(22):5381–4.
    [250] Chang W, Zhang M. Silicon-based multimode waveguide crossings. J Phys Photonics. 2020;2(2):022002.
    [251] Xu H, Shi Y. Metamaterial-based Maxwell’s fisheye lens for multimode waveguide crossing. Laser Photonics Rev. 2018;12(10):1800094.
    [252] Chen LR, et al. Subwavelength grating waveguide devices for telecommunications applications. IEEE J Sel Top Quant Electron. 2018;25(3):8200111.
    [253] Wang J, Glesk I, Chen L. Subwavelength grating Bragg grating filters in silicon-on-insulator. IET Electron Lett. 2015;51(9):712–3.
    [254] Pérez-Galacho D, et al. Optical pump-rejection filter based on silicon sub-wavelength engineered photonic structures. Opt Lett. 2017;42(8):1468–71.
    [255] Sumi R, et al. Ultra-broadband add-drop filter/switch circuit using subwavelength grating waveguides. IEEE J Select Top Quantum Electron. 2018;25(3):1–11.
    [256] Chen J, Shi Y. Flat-top CWDM (De) multiplexers based on contra-directional couplers with subwavelength gratings. IEEE Photon Technol Lett. 2019;31(24):2003–6.
    [257] Ma K, Han S, Long Z, et al. Optical forces in silicon subwavelength-grating waveguides. Opt Express. 2017;25(25):30876.
    [258] Huang L, et al. Improving the detection limit for on-chip photonic sensors based on subwavelength grating racetrack resonators. Opt Express. 2017;25(9):10527–35.
    [259] Zhang L, Dai D. Silicon subwavelength-grating microdisks for optical sensing. IEEE Photon Technol Lett. 2019;31(15):1209–12.
    [260] Flueckiger J, et al. Subwavelength grating for enhanced ring resonator biosensor. Opt Express. 2016;24(14):15672–86.
    [261] Pan Z, et al. High-speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator. Laser Photonics Rev. 2018;12(6):1700300.
    [262] Abdelatty M, Swillam MA. Hybrid plasmonic electro-optical absorption modulator based on phase change characteristics of vanadium-dioxide. J Nanophotonics. 2019;13(4):046014.
    [263] Jean P, et al. Slow light in subwavelength grating waveguides. IEEE J Select Top Quantum Electron. 2019;26(2):8200108.
    [264] Gervais A, et al. Tunable slow-light in silicon photonic subwavelength grating waveguides. 2019 IEEE 16th International Conference on Group IV Photonics (GFP). IEEE, 2019.
    [265] Wang J, et al. Subwavelength grating enabled on-chip ultra-compact optical true time delay line. Sci Rep. 2016;6:30235.
    [266] Li T, and Zou Y. Coupling condition engineered subwavelength grating waveguide ring resonator for sensitivity enhancement. Integrated Optics: Devices, Materials, and Technologies XXIV. Vol. 11283. International Society for Optics and Photonics, 2020.
    [267] Glesk I, et al. All-optical switching using nonlinear subwavelength Mach-Zehnder on silicon. Opt Express. 2011;19(15):14031–9.
    [268] Babaei M, et al. Compact and broadband 2× 2 optical switch based on hybrid plasmonic waveguides and curved directional couplers. Appl Opt. 2020;59(4):975–84.
    [269] Glesk I, et al. Picosecond all-optical switching using nonlinear Mach–Zehnder with silicon subwavelength grating and photonic wire arms. Opt Quant Electron. 2012;44(12-13):613–21.
    [270] Bock P, et al. Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator. Laser Photonics Rev. 2013;7(6):L67–70.
    [271] González-Andrade D, et al. Ultra-broadband nanophotonic phase shifter based on subwavelength metamaterial waveguides. Photonics Res. 2020;8(3):359–67.
  • 加载中
计量
  • 文章访问数:  199
  • HTML全文浏览量:  4
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 录用日期:  2021-05-12
  • 网络出版日期:  2021-07-13

目录

    /

    返回文章
    返回