留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)

Yao Fan Jiaji Li Linpeng Lu Jiasong Sun Yan Hu Jialin Zhang Zhuoshi Li Qian Shen Bowen Wang Runnan Zhang Qian Chen Chao Zuo

Yao Fan, Jiaji Li, Linpeng Lu, Jiasong Sun, Yan Hu, Jialin Zhang, Zhuoshi Li, Qian Shen, Bowen Wang, Runnan Zhang, Qian Chen, Chao Zuo. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)[J]. PhotoniX. doi: 10.1186/s43074-021-00040-2
引用本文: Yao Fan, Jiaji Li, Linpeng Lu, Jiasong Sun, Yan Hu, Jialin Zhang, Zhuoshi Li, Qian Shen, Bowen Wang, Runnan Zhang, Qian Chen, Chao Zuo. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)[J]. PhotoniX. doi: 10.1186/s43074-021-00040-2
Yao Fan, Jiaji Li, Linpeng Lu, Jiasong Sun, Yan Hu, Jialin Zhang, Zhuoshi Li, Qian Shen, Bowen Wang, Runnan Zhang, Qian Chen, Chao Zuo. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)[J]. PhotoniX. doi: 10.1186/s43074-021-00040-2
Citation: Yao Fan, Jiaji Li, Linpeng Lu, Jiasong Sun, Yan Hu, Jialin Zhang, Zhuoshi Li, Qian Shen, Bowen Wang, Runnan Zhang, Qian Chen, Chao Zuo. Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)[J]. PhotoniX. doi: 10.1186/s43074-021-00040-2

Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)

doi: 10.1186/s43074-021-00040-2
基金项目: 

This work was supported by the National Natural Science Foundation of China (61905115), Leading Technology of Jiangsu Basic Research Plan (BK20192003), National Defense Science and Technology Foundation of China (2019-JCJQ-JJ-381), Youth Foundation of Jiangsu Province (BK20190445), Fundamental Research Funds for the Central Universities (30920032101), and Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411).

Smart computational light microscopes (SCLMs) of smart computational imaging laboratory (SCILab)

Funds: 

This work was supported by the National Natural Science Foundation of China (61905115), Leading Technology of Jiangsu Basic Research Plan (BK20192003), National Defense Science and Technology Foundation of China (2019-JCJQ-JJ-381), Youth Foundation of Jiangsu Province (BK20190445), Fundamental Research Funds for the Central Universities (30920032101), and Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense (3091801410411).

  • 摘要: Computational microscopy, as a subfield of computational imaging, combines optical manipulation and image algorithmic reconstruction to recover multi-dimensional microscopic images or information of micro-objects. In recent years, the revolution in light-emitting diodes (LEDs), low-cost consumer image sensors, modern digital computers, and smartphones provide fertile opportunities for the rapid development of computational microscopy. Consequently, diverse forms of computational microscopy have been invented, including digital holographic microscopy (DHM), transport of intensity equation (TIE), differential phase contrast (DPC) microscopy, lens-free on-chip holography, and Fourier ptychographic microscopy (FPM). These computational microscopy techniques not only provide high-resolution, label-free, quantitative phase imaging capability but also decipher new and advanced biomedical research and industrial applications. Nevertheless, most computational microscopy techniques are still at an early stage of "proof of concept" or "proof of prototype" (based on commercially available microscope platforms). Translating those concepts to stand-alone optical instruments for practical use is an essential step for the promotion and adoption of computational microscopy by the wider bio-medicine, industry, and education community. In this paper, we present four smart computational light microscopes (SCLMs) developed by our laboratory, i.e., smart computational imaging laboratory (SCILab) of Nanjing University of Science and Technology (NJUST), China. These microscopes are empowered by advanced computational microscopy techniques, including digital holography, TIE, DPC, lensless holography, and FPM, which not only enables multi-modal contrast-enhanced observations for unstained specimens, but also can recover their three-dimensional profiles quantitatively. We introduce their basic principles, hardware configurations, reconstruction algorithms, and software design, quantify their imaging performance, and illustrate their typical applications for cell analysis, medical diagnosis, and microlens characterization.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Mertz J. Introduction to Optical Microscopy: Cambridge University Press; 2019.
    [2] Rost FW, Vol. 2. Fluorescence Microscopy: Cambridge University Press; 1992.
    [3] Lichtman JW, Conchello J-A. Fluorescence microscopy. Nat Methods. 2005; 2(12):910–9.
    [4] Webb RH. Confocal optical microscopy. Rep Prog Phys. 1996; 59(3):427.
    [5] Sheppard CJ, Shotton DM. Confocal Laser Scanning Microscopy; 1997.
    [6] Pawley J, Vol. 236. Handbook of Biological Confocal Microscopy: Springer Science & Business Media; 2006.
    [7] Axelrod D, Burghardt TP, Thompson NL. Total internal reflection fluorescence. Annu Rev Biophys Bioeng. 1984; 13(1):247–68.
    [8] Axelrod D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2001; 2(11):764–74.
    [9] Diaspro A, et al, Vol. 1. Confocal and Two-photon Microscopy: Foundations, Applications, and Advances. New York: Wiley-Liss; 2002.
    [10] Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005; 2(12):932–40.
    [11] Huisken J, Stainier DY. Selective plane illumination microscopy techniques in developmental biology. Development. 2009; 136(12):1963–75.
    [12] Vettenburg T, Dalgarno HI, Nylk J, Coll-Lladó C, Ferrier DE, Čižmár T, Gunn-Moore FJ, Dholakia K. Light-sheet microscopy using an airy beam. Nat Methods. 2014; 11(5):541–4.
    [13] Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science. 2004; 305(5686):1007–9.
    [14] Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol. 2008; 6(5):339–48.
    [15] Moerner WE, Kador L. Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett. 1989; 62(21):2535.
    [16] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994; 19(11):780–2.
    [17] Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW. Sted microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature. 2006; 440(7086):935–9.
    [18] Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006; 313(5793):1642–5.
    [19] Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006; 91(11):4258–72.
    [20] Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat Methods. 2006; 3(10):793–6.
    [21] Huang B, Wang W, Bates M, Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008; 319(5864):810–3.
    [22] Gustafsson MG. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc. 2000; 198(2):82–7.
    [23] Gustafsson MG. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci. 2005; 102(37):13081–6.
    [24] Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science. 2003; 300(5616):82–6.
    [25] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica. 1942; 9(10):974–86.
    [26] Zernike F. Phase contrast. Z Tech Physik. 1935; 16:454.
    [27] Zernike F. How i discovered phase contrast. Science. 1955; 121(3141):345–9.
    [28] Gao P, Yao B, Harder I, Lindlein N, Torcal-Milla FJ. Phase-shifting zernike phase contrast microscopy for quantitative phase measurement. Opt Lett. 2011; 36(21):4305–7.
    [29] Nomarski G. Nouveau dispositif pour lobservation en contraste de phase differentiel. In: Journal de Physique et Le Radium: 1955. p. 88. EDP SCIENCES 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944...
    [30] Lang W. Nomarski Differential Interference-contrast Microscopy: Carl Zeiss; 1982.
    [31] Arnison MR, Larkin KG, Sheppard CJ, Smith NI, Cogswell CJ. Linear phase imaging using differential interference contrast microscopy. J Microsc. 2004; 214(1):7–12.
    [32] Cogswell CJ, Sheppard C. Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging. J Microsc. 1992; 165(1):81–101.
    [33] Matic RM, Goodman JW. Optimal pupil screen design for the estimation of partially coherent images. J Opt Soc Am A. 1987; 4(12):2213–27.
    [34] Mait JN, Euliss GW, Athale RA. Computational imaging. Adv Opt Photon. 2018; 10(2):409–83.
    [35] Mir M, Bhaduri B, Wang R, Zhu R, Popescu G. Quantitative phase imaging. Prog Opt. 2012; 57(133-37):217.
    [36] Eils R, Athale C. Computational imaging in cell biology. J Cell Biol. 2003; 161(3):477–81.
    [37] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics. 2018; 12(10):578–89.
    [38] Popescu G. Quantitative Phase Imaging of Cells and Tissues: McGraw-Hill Education; 2011.
    [39] Townes CH, Schawlow AL. Microwave Spectroscopy: Courier Corporation; 2013.
    [40] Boyle WS, Smith GE. Charge coupled semiconductor devices. Bell Syst Tech J. 1970; 49(4):587–93.
    [41] Hiraoka Y, Sedat JW, Agard DA. The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science. 1987; 238(4823):36–41.
    [42] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging. Opt Lett. 1999; 24(5):291–3.
    [43] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms. Appl Opt. 1999; 38(34):6994–7001.
    [44] Cuche E, Marquet P, Depeursinge C. Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl Opt. 2000; 39(23):4070–5.
    [45] Schnars U, Jüptner WP. Digital recording and numerical reconstruction of holograms. Meas Sci Technol. 2002; 13(9):85.
    [46] Kim MK. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010; 1(1):018005.
    [47] Judge TR, Bryanston-Cross P. A review of phase unwrapping techniques in fringe analysis. Opt Lasers Eng. 1994; 21(4):199–239.
    [48] Ghiglia DC, Romero LA. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J Opt Soc Am A. 1994; 11(1):107–17.
    [49] Goldstein RM, Zebker HA, Werner CL. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988; 23(4):713–20.
    [50] Ferraro P, Grilli S, Alfieri D, De Nicola S, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V. Extended focused image in microscopy by digital holography. Opt Express. 2005; 13(18):6738–49.
    [51] Cacace T, Bianco V, Mandracchia B, Pagliarulo V, Oleandro E, Paturzo M, Ferraro P. Compact off-axis holographic slide microscope: design guidelines. Biomed Opt Express. 2020; 11(5):2511–32.
    [52] Park Y, Choi W, Yaqoob Z, Dasari R, Badizadegan K, Feld MS. Speckle-field digital holographic microscopy. Opt Express. 2009; 17(15):12285–92.
    [53] Osten W, Faridian A, Gao P, Körner K, Naik D, Pedrini G, Singh AK, Takeda M, Wilke M. Recent advances in digital holography. Appl Opt. 2014; 53(27):44–63.
    [54] Kemper B, Von Bally G. Digital holographic microscopy for live cell applications and technical inspection. Appl Opt. 2008; 47(4):52–61.
    [55] Platt BC, Shack R. History and principles of shack-hartmann wavefront sensing. J Refract Surg. 2001; 17(5):573–7.
    [56] Ragazzoni R. Pupil plane wavefront sensing with an oscillating prism. J Mod Opt. 1996; 43(2):289–93.
    [57] Iglesias I. Pyramid phase microscopy. Opt Lett. 2011; 36(18):3636–8.
    [58] Neil MA, Booth MJ, Wilson T. New modal wave-front sensor: a theoretical analysis. J Opt Soc Am A. 2000; 17(6):1098–107.
    [59] Zuo C, Li J, Sun J, Fan Y, Zhang J, Lu L, Zhang R, Wang B, Huang L, Chen Q. Transport of intensity equation: a tutorial. Opt Lasers Eng. 2020; 135:106187.
    [60] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution fourier ptychographic microscopy. Nat Photonics. 2013; 7(9):739.
    [61] Tian L, Wang J, Waller L. 3D differential phase-contrast microscopy with computational illumination using an led array. Opt Lett. 2014; 39(5):1326–9.
    [62] Shack RV. Production and use of a lecticular hartmann screen. J Opt Soc Am. 1971; 61:656–61.
    [63] Esposito S, Riccardi A. Pyramid wavefront sensor behavior in partial correction adaptive optic systems. Astron Astrophys. 2001; 369(2):9–12.
    [64] Ragazzoni R, Diolaiti E, Vernet E. A pyramid wavefront sensor with no dynamic modulation. Opt Commun. 2002; 208(1-3):51–60.
    [65] Booth MJ. Wave front sensor-less adaptive optics: a model-based approach using sphere packings. Opt Express. 2006; 14(4):1339–52.
    [66] Gerchberg RW. Phase determination for image and diffraction plane pictures in the electron microscope. Optik (Stuttgart). 1971; 34:275.
    [67] Gerchberg RW. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik. 1972; 35:237–46.
    [68] Faulkner HML, Rodenburg J. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm. Phys Rev Lett. 2004; 93(2):023903.
    [69] Rodenburg JM, Faulkner HM. A phase retrieval algorithm for shifting illumination. Appl Phys Lett. 2004; 85(20):4795–7.
    [70] Teague MR. Irradiance moments: their propagation and use for unique retrieval of phase. J Opt Soc Am. 1982; 72(9):1199–209.
    [71] Teague MR. Deterministic phase retrieval: a green’s function solution. J Opt Soc Am. 1983; 73(11):1434–41.
    [72] Petruccelli JC, Tian L, Barbastathis G. The transport of intensity equation for optical path length recovery using partially coherent illumination. Opt Express. 2013; 21(12):14430–41.
    [73] Wang Z, Millet L, Mir M, Ding H, Unarunotai S, Rogers J, Gillette MU, Popescu G. Spatial light interference microscopy (SLIM). Opt Express. 2011; 19(2):1016–26.
    [74] Popescu G, Wang Z. Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization.Google Patents; 2012. US Patent 8,184,298.
    [75] Bhaduri B, Pham H, Mir M, Popescu G. Diffraction phase microscopy with white light. Opt Lett. 2012; 37(6):1094–6.
    [76] Pham HV, Edwards C, Goddard LL, Popescu G. Fast phase reconstruction in white light diffraction phase microscopy. Appl Opt. 2013; 52(1):97–101.
    [77] Bon P, Maucort G, Wattellier B, Monneret S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt Express. 2009; 17(15):13080–94.
    [78] Aknoun S, Savatier J, Bon P, Galland F, Abdeladim L, Wattellier BF, Monneret S. Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion. J Biomed Opt. 2015; 20(12):126009.
    [79] Shaked NT. Quantitative phase microscopy of biological samples using a portable interferometer. Opt Lett. 2012; 37(11):2016–8.
    [80] Wada A, Kato M, Ishii Y. Multiple-wavelength digital holographic interferometry using tunable laser diodes. Appl Opt. 2008; 47(12):2053–60.
    [81] Zheng G, Kolner C, Yang C. Microscopy refocusing and dark-field imaging by using a simple led array. Opt Lett. 2011; 36(20):3987–9.
    [82] Li J, Chen Q, Sun J, Zhang J, Zuo C. Multimodal computational microscopy based on transport of intensity equation. J Biomed Opt. 2016; 21(12):126003.
    [83] Zuo C, Sun J, Feng S, Hu Y, Chen Q. Programmable colored illumination microscopy (PCIM): A practical and flexible optical staining approach for microscopic contrast enhancement. Opt Lasers Eng. 2016; 78:35–47.
    [84] Dan D, Lei M, Yao B, Wang W, Winterhalder M, Zumbusch A, Qi Y, Xia L, Yan S, Yang Y, et al. Dmd-based led-illumination super-resolution and optical sectioning microscopy. Sci Rep. 2013; 3:1116.
    [85] Mehta SB, Sheppard CJ. Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast. Opt Lett. 2009; 34(13):1924–6.
    [86] Fan Y, Sun J, Chen Q, Pan X, Tian L, Zuo C. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy. Photonics Res. 2019; 7(8):890–904.
    [87] Ou X, Zheng G, Yang C. Embedded pupil function recovery for fourier ptychographic microscopy. Opt Express. 2014; 22(5):4960–72.
    [88] Dong S, Shiradkar R, Nanda P, Zheng G. Spectral multiplexing and coherent-state decomposition in fourier ptychographic imaging. Biomed Opt Express. 2014; 5(6):1757–67.
    [89] Sun J, Chen Q, Zhang Y, Zuo C. Efficient positional misalignment correction method for fourier ptychographic microscopy. Biomed Opt Express. 2016; 7(4):1336–50.
    [90] Levoy M, Ng R, Adams A, Footer M, Horowitz M. Light field microscopy. In: ACM SIGGRAPH 2006 Papers: 2006. p. 924–34.
    [91] Prevedel R, Yoon Y-G, Hoffmann M, Pak N, Wetzstein G, Kato S, Schrödel T, Raskar R, Zimmer M, Boyden ES, et al. Simultaneous whole-animal 3d imaging of neuronal activity using light-field microscopy. Nat Methods. 2014; 11(7):727–30.
    [92] Zuo C, Sun J, Feng S, Zhang M, Chen Q. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging. Opt Lasers Eng. 2016; 80:24–31.
    [93] Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev. 2011; 5(1):81–101.
    [94] Chang B-J, Chou L-J, Chang Y-C, Chiang S-Y. Isotropic image in structured illumination microscopy patterned with a spatial light modulator. Opt Express. 2009; 17(17):14710–21.
    [95] Lauer V. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J Microsc. 2002; 205(2):165–76.
    [96] Sung Y, Choi W, Fang-Yen C, Badizadegan K, Dasari RR, Feld MS. Optical diffraction tomography for high resolution live cell imaging. Opt Express. 2009; 17(1):266–77.
    [97] Bracewell RN. Strip integration in radio astronomy. Aust J Phys. 1956; 9(2):198–217.
    [98] Kak AC, Slaney M, Wang G. Principles of computerized tomographic imaging: Society for Industrial and Applied Mathematics; 2002.
    [99] Deans SR. The Radon Transform and Some of Its Applications: Courier Corporation; 2007.
    [100] Wolf E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt Commun. 1969; 1(4):153–6.
    [101] Carter WH. Computational reconstruction of scattering objects from holograms. J Opt Soc Am. 1970; 60(3):306–14.
    [102] Devaney AJ. A filtered backpropagation algorithm for diffraction tomography. Ultrason Imaging. 1982; 4(4):336–50.
    [103] Seo S, Su T-W, Tseng DK, Erlinger A, Ozcan A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip. 2009; 9(6):777–87.
    [104] Moon S, Keles HO, Ozcan A, Khademhosseini A, Hěggstrom E, Kuritzkes D, Demirci U. Integrating microfluidics and lensless imaging for point-of-care testing. Biosens Bioelectron. 2009; 24(11):3208–14.
    [105] Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, Oztoprak C, Seo S, Khademhosseini B, Ozcan A. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip. 2010; 10(11):1417–28.
    [106] Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, Ozcan A. Lensfree microscopy on a cellphone. Lab Chip. 2010; 10(14):1787–92.
    [107] Aidukas T, Eckert R, Harvey AR, Waller L, Konda PC. Low-cost, sub-micron resolution, wide-field computational microscopy using opensource hardware. Sci Rep. 2019; 9(1):1–12.
    [108] Jung D, Choi J-H, Kim S, Ryu S, Lee W, Lee J-S, Joo C. Smartphone-based multi-contrast microscope using color-multiplexed illumination. Sci Rep. 2017; 7(1):7564.
    [109] Phillips ZF, D’Ambrosio MV, Tian L, Rulison JJ, Patel HS, Sadras N, Gande AV, Switz NA, Fletcher DA, Waller L. Multi-contrast imaging and digital refocusing on a mobile microscope with a domed led array. PloS ONE. 2015; 10(5):0124938.
    [110] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436–44.
    [111] Goodfellow I, Bengio Y, Courville A, Bengio Y, Vol. 1. Deep Learning. Cambridge: MIT press; 2016.
    [112] Rivenson Y, Wu Y, Ozcan A. Deep learning in holography and coherent imaging. Light: Sci Appl. 2019; 8(1):1–8.
    [113] Barbastathis G, Ozcan A, Situ G. On the use of deep learning for computational imaging. Optica. 2019; 6(8):921–43.
    [114] Wu L, Zhang Z. Domain multiplexed computer-generated holography by embedded wavevector filtering algorithm. PhotoniX. 2021; 2(1):1–12.
    [115] Rivenson Y, Zhang Y, Günaydın H, Teng D, Ozcan A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Sci Appl. 2018; 7(2):17141.
    [116] Nguyen T, Bui V, Lam V, Raub CB, Chang L-C, Nehmetallah G. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. Opt Express. 2017; 25(13):15043–57.
    [117] Wang K, Dou J, Kemao Q, Di J, Zhao J. Y-net: a one-to-two deep learning framework for digital holographic reconstruction. Opt Lett. 2019; 44(19):4765–8.
    [118] Kemp ZDC. Propagation based phase retrieval of simulated intensity measurements using artificial neural networks. J Opt. 2018; 20(4):045606.
    [119] Wang K, Di J, Li Y, Ren Z, Kemao Q, Zhao J. Transport of intensity equation from a single intensity image via deep learning. Opt Lasers Eng. 2020; 134:106233.
    [120] Diederich B, Wartmann R, Schadwinkel H, Heintzmann R. Using machine-learning to optimize phase contrast in a low-cost cellphone microscope. PloS ONE. 2018; 13(3):0192937.
    [121] Kellman MR, Bostan E, Repina NA, Waller L. Physics-based learned design: optimized coded-illumination for quantitative phase imaging. IEEE Trans Comput Imaging. 2019; 5(3):344–53.
    [122] Sinha A, Lee J, Li S, Barbastathis G. Lensless computational imaging through deep learning. Optica. 2017; 4(9):1117–25.
    [123] Nguyen T, Xue Y, Li Y, Tian L, Nehmetallah G. Deep learning approach for fourier ptychography microscopy. Opt Express. 2018; 26(20):26470–84.
    [124] Kappeler A, Ghosh S, Holloway J, Cossairt O, Katsaggelos A. Ptychnet: Cnn based fourier ptychography. In: 2017 IEEE International Conference on Image Processing (ICIP). IEEE: 2017. p. 1712–6.
    [125] Jiang S, Guo K, Liao J, Zheng G. Solving fourier ptychographic imaging problems via neural network modeling and tensorflow. Biomed Opt Express. 2018; 9(7):3306–19.
    [126] Li X, Qiao H, Wu J, Lu Z, Yan T, Zhang R, Zhang X, Dai Q. Deeplfm: Deep learning-based 3d reconstruction for light field microscopy. In: Novel Techniques in Microscopy. Optical Society of America: 2019. p. 3–2.
    [127] Wang Z, Zhang H, Yang Y, Li G, Zhu L, Li Y, He M, Zhu T, Hsiai TK, Gao S, et al. Deep learning light field microscopy for video-rate volumetric functional imaging of behaving animal. bioRxiv. 2019:432807.
    [128] Wu G, Liu Y, Dai Q, Chai T. Learning sheared EPI structure for light field reconstruction. IEEE Trans Image Process. 2019; 28(7):3261–73.
    [129] Jin L, Liu B, Zhao F, Hahn S, Dong B, Song R, Elston TC, Xu Y, Hahn KM. Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat Commun. 2020; 11(1):1–7.
    [130] Wu Y, Shroff H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat Methods. 2018; 15(12):1011–9.
    [131] Kolobov MI. Quantum Imaging: Springer Science & Business Media; 2007.
    [132] Erkmen BI, Shapiro JH. Ghost imaging: from quantum to classical to computational. Adv Opt Photon. 2010; 2(4):405–50.
    [133] Izatt JA, Hee MR, Owen GM, Swanson EA, Fujimoto JG. Optical coherence microscopy in scattering media. Opt Lett. 1994; 19(8):590–2.
    [134] Kokhanovsky AA. Light Scattering Media Optics: Springer Science & Business Media; 2004.
    [135] Yang W, Li G, Situ G. Imaging through scattering media with the auxiliary of a known reference object. Sci Rep. 2018; 8(1):1–7.
    [136] Soifer VA, Kotlar V, Doskolovich L. Iteractive Methods For Diffractive Optical Elements Computation: CRC Press; 1997.
    [137] Di Fabrizio E, Cojoc D, Cabrini S, Kaulich B, Susini J, Facci P, Wilhein T. Diffractive optical elements for differential interference contrast x-ray microscopy. Opt Express. 2003; 11(19):2278–88.
    [138] Helle ØI, Dullo FT, Lahrberg M, Tinguely J-C, Hellesø OG, Ahluwalia BS. Structured illumination microscopy using a photonic chip. Nat Photonics. 2020; 14:1–8.
    [139] Abrahamsson S. Super-resolution microscopy on a photonic chip. Nat Photonics. 2020; 14(7):403–4.
    [140] Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Phys Rev B. 2006; 74(7):075103.
    [141] Wallauer J, Bitzer A, Waselikowski S, Walther M. Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study. Opt Express. 2011; 19(18):17283–92.
    [142] Kwon H, Arbabi E, Kamali SM, Faraji-Dana M, Faraon A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat Photonics. 2020; 14(2):109–14.
    [143] Backlund MP, Arbabi A, Petrov PN, Arbabi E, Saurabh S, Faraon A, Moerner W. Removing orientation-induced localization biases in single-molecule microscopy using a broadband metasurface mask. Nat Photonics. 2016; 10(7):459–62.
    [144] Zhao R, Huang L, Wang Y. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX. 2020; 1(1):1–24.
    [145] Chen WT, Zhu AY, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nat Nanotechnol. 2018; 13(3):220–6.
    [146] Li B, Piyawattanametha W, Qiu Z. Metalens-based miniaturized optical systems. Micromachines. 2019; 10(5):310.
    [147] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalenses. PhotoniX. 2020; 1(1):1–24.
    [148] Krull A, Hirsch P, Rother C, Schiffrin A, Krull C. Artificial-intelligence-driven scanning probe microscopy. Commun Phys. 2020; 3(1):1–8.
    [149] von Chamier L, Laine RF, Henriques R. Artificial intelligence for microscopy: what you should know. Biochem Soc Trans. 2019; 47(4):1029–40.
    [150] Berman G, Doolen G, Hammel P, Tsifrinovich V. Magnetic resonance force microscopy quantum computer with tellurium donors in silicon. Phys Rev Lett. 2001; 86(13):2894.
    [151] Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, Ozcan A. All-optical machine learning using diffractive deep neural networks. Science. 2018; 361(6406):1004–8.
    [152] Luo Y, Mengu D, Yardimci NT, Rivenson Y, Veli M, Jarrahi M, Ozcan A. Design of task-specific optical systems using broadband diffractive neural networks. Light: Sci Appl. 2019; 8(1):1–14.
    [153] Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv für mikroskopische Anatomie. 1873; 9(1):413–68.
    [154] Abdulhalim I. Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography. Ann Phys. 2012; 524(12):787–804.
    [155] Dubois F, Joannes L, Legros J-C. Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence. Appl Opt. 1999; 38(34):7085–94.
    [156] Demos S, Alfano R. Optical polarization imaging. Appl Opt. 1997; 36(1):150–5.
    [157] Holst GC. Ccd arrays, cameras, and displays: Citeseer; 1998.
    [158] Schnars U, Jüptner W. Direct recording of holograms by a CCD target and numerical reconstruction. Appl Opt. 1994; 33(2):179–81.
    [159] Wu Q, Merchant F, Castleman K. Microscope Image Processing: Elsevier; 2010.
    [160] Tian L, Waller L. Quantitative differential phase contrast imaging in an led array microscope. Opt Express. 2015; 23(9):11394–403.
    [161] Sun J, Zuo C, Zhang J, Fan Y, Chen Q. High-speed fourier ptychographic microscopy based on programmable annular illuminations. Sci Rep. 2018; 8(1):1–12.
    [162] Devaney A. Inverse-scattering theory within the rytov approximation. Opt Lett. 1981; 6(8):374–6.
    [163] Tian L, Waller L. 3d intensity and phase imaging from light field measurements in an led array microscope. Optica. 2015; 2(2):104–11.
    [164] Luo W, Zhang Y, Feizi A, Göröcs Z, Ozcan A. Pixel super-resolution using wavelength scanning. Light: Sci Appl. 2016; 5(4):16060.
    [165] Fan Y, Sun J, Chen Q, Pan X, Trusiak M, Zuo C. Single-shot isotropic quantitative phase microscopy based on color-multiplexed differential phase contrast. APL Photonics. 2019; 4(12):121301.
    [166] Edwards C, Bhaduri B, Nguyen T, Griffin BG, Pham H, Kim T, Popescu G, Goddard LL. Effects of spatial coherence in diffraction phase microscopy. Opt Express. 2014; 22(5):5133–46.
    [167] Song S, Kim J, Hur S, Song J, Joo C. Large-area, high-resolution birefringence imaging with polarization-sensitive fourier ptychographic microscopy. ACS Photonics. 2021; 8(1):158–65.
    [168] Heng X, Erickson D, Baugh LR, Yaqoob Z, Sternberg PW, Psaltis D, Yang C. Optofluidic microscopy–a method for implementing a high resolution optical microscope on a chip. Lab Chip. 2006; 6(10):1274–6.
    [169] Zhang J, Sun J, Chen Q, Li J, Zuo C. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy. Sci Rep. 2017; 7(1):1–15.
    [170] Zhang J, Chen Q, Li J, Sun J, Zuo C. Lensfree dynamic super-resolved phase imaging based on active micro-scanning. Opt Lett. 2018; 43(15):3714–7.
    [171] Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. Methods Gen Mol Microbiol. 2007:19–33.
    [172] Chiu M, Barrett H, Simpson R, Chou C, Arendt J, Gindi G. Three-dimensional radiographic imaging with a restricted view angle. J Opt Soc Am. 1979; 69(10):1323–33.
    [173] Zhang F, Pedrini G, Osten W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys Rev A. 2007; 75(4):043805.
    [174] Almoro PF, Waller L, Agour M, Falldorf C, Pedrini G, Osten W, Hanson SG. Enhanced deterministic phase retrieval using a partially developed speckle field. Opt Lett. 2012; 37(11):2088–90.
    [175] Jiang S, Zhu J, Song P, Guo C, Bian Z, Wang R, Huang Y, Wang S, Zhang H, Zheng G. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip. 2020; 20(6):1058–65.
    [176] Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt Express. 2010; 18(12):12552–61.
    [177] Wu Y, Zhang Y, Luo W, Ozcan A. Demosaiced pixel super-resolution for multiplexed holographic color imaging. Sci Rep. 2016; 6(1):1–9.
    [178] Sun J, Chen Q, Zhang Y, Zuo C. Sampling criteria for fourier ptychographic microscopy in object space and frequency space. Opt Express. 2016; 24(14):15765–81.
    [179] Kim S, Cense B, Joo C. Single-pixel, single-input-state polarization-sensitive wavefront imaging. Opt Lett. 2020; 45(14):3965–8.
    [180] Duarte MF, Davenport MA, Takhar D, Laska JN, Sun T, Kelly KF, Baraniuk RG. Single-pixel imaging via compressive sampling. IEEE Signal Proc Mag. 2008; 25(2):83–91.
    [181] Sun B, Edgar MP, Bowman R, Vittert LE, Welsh S, Bowman A, Padgett MJ. 3d computational imaging with single-pixel detectors. Science. 2013; 340(6134):844–7.
    [182] Wu X, Sun J, Zhang J, Lu L, Chen R, Chen Q, Zuo C. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging. Opt Lett. 2021; 46(9):2023–6.
    [183] Fienup JR. Phase retrieval algorithms: a comparison. Appl Opt. 1982; 21(15):2758–69.
    [184] Allen L, Oxley M. Phase retrieval from series of images obtained by defocus variation. Opt Commun. 2001; 199(1-4):65–75.
    [185] Paganin D, Nugent KA. Noninterferometric phase imaging with partially coherent light. Phys Rev Lett. 1998; 80(12):2586.
    [186] Zuo C, Chen Q, Li H, Qu W, Asundi A. Boundary-artifact-free phase retrieval with the transport of intensity equation ii: applications to microlens characterization. Opt Express. 2014; 22(15):18310–24.
    [187] Fiddy M. Inversion of optical scattered field data. J Phys D Appl Phys. 1986; 19(3):301.
    [188] Ling R, Tahir W, Lin H-Y, Lee H, Tian L. High-throughput intensity diffraction tomography with a computational microscope. Biomed Opt Express. 2018; 9(5):2130–41.
    [189] Li J, Matlock A, Li Y, Chen Q, Zuo C, Tian L. High-speed in vitro intensity diffraction tomography. Adv Photonics. 2019; 1(6):066004.
    [190] Li J, Matlock A, Li Y, Chen Q, Tian L, Zuo C. Resolution-enhanced intensity diffraction tomography in high numerical aperture label-free microscopy. Photonics Res. 2020; 8(12):1818–26.
    [191] Sun J, Zuo C, Zhang L, Chen Q. Resolution-enhanced fourier ptychographic microscopy based on high-numerical-aperture illuminations. Sci Rep. 2017; 7(1):1187.
    [192] Faulkner HML, Rodenburg JM. Error tolerance of an iterative phase retrieval algorithm for moveable illumination microscopy. Ultramicroscopy. 2005; 103(2):153–64.
    [193] Tian L, Liu Z, Yeh L-H, Chen M, Zhong J, Waller L. Computational illumination for high-speed in vitro fourier ptychographic microscopy. Optica. 2015; 2(10):904–11.
    [194] Sun J, Chen Q, Zhang J, Fan Y, Zuo C. Single-shot quantitative phase microscopy based on color-multiplexed fourier ptychography. Opt Lett. 2018; 43(14):3365–8.
    [195] Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006; 52(4):1289–306.
    [196] Donoho DL. For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Commun Pur Appl Math: J Courant Inst Math Sci. 2006; 59(6):797–829.
    [197] Chen W, Chen X, Stern A, Javidi B. Phase-modulated optical system with sparse representation for information encoding and authentication. IEEE Photonics J. 2013; 5(2):6900113.
    [198] Dong W, Shi G, Li X, Ma Y, Huang F. Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Process. 2014; 23(8):3618–32.
    [199] Tai C, Xiao T, Zhang Y, Wang X, et al. Convolutional neural networks with low-rank regularization. arXiv preprint arXiv:1511.06067. 2015.
    [200] Kellman M, Bostan E, Chen M, Waller L. Data-driven design for fourier ptychographic microscopy. In: 2019 IEEE International Conference on Computational Photography (ICCP). IEEE: 2019. p. 1–8.
    [201] Di J, Zhao J, Jiang H, Zhang P, Fan Q, Sun W. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear ccd scanning. Appl Opt. 2008; 47(30):5654–9.
    [202] Popescu G, Deflores LP, Vaughan JC, Badizadegan K, Iwai H, Dasari RR, Feld MS. Fourier phase microscopy for investigation of biological structures and dynamics. Opt Lett. 2004; 29(21):2503–5.
    [203] Popescu G, Ikeda T, Dasari RR, Feld MS. Diffraction phase microscopy for quantifying cell structure and dynamics. Opt Lett. 2006; 31(6):775–7.
    [204] Ferraro P, De Nicola S, Finizio A, Coppola G, Grilli S, Magro C, Pierattini G. Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging. Appl Opt. 2003; 42(11):1938–46.
    [205] Asundi A, Wensen Z. Fast phase-unwrapping algorithm based on a gray-scale mask and flood fill. Appl Opt. 1998; 37(23):5416–20.
    [206] Goud BK, Shinde D, Udupa D, Krishna CM, Rao KD, Sahoo N. Low cost digital holographic microscope for 3-d cell imaging by integrating smartphone and dvd optical head. Opt Lasers Eng. 2019; 114:1–6.
    [207] Sánchez-Ortiga E, Ferraro P, Martínez-Corral M, Saavedra G, Doblas A. Digital holographic microscopy with pure-optical spherical phase compensation. J Opt Soc Am A. 2011; 28(7):1410–7.
    [208] Serabyn E, Liewer K, Lindensmith C, Wallace K, Nadeau J. Compact, lensless digital holographic microscope for remote microbiology. Opt Express. 2016; 24(25):28540–8.
    [209] Rawat S, Komatsu S, Markman A, Anand A, Javidi B. Compact and field-portable 3d printed shearing digital holographic microscope for automated cell identification. Appl Opt. 2017; 56(9):127–33.
    [210] Zheng J, Pedrini G, Gao P, Yao B, Osten W. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination. J Opt. 2015; 17(8):085301.
    [211] Di J, Zhao J, Sun W, Jiang H, Yan X. Phase aberration compensation of digital holographic microscopy based on least squares surface fitting. Opt Commun. 2009; 282(19):3873–7.
    [212] Kumar M, Tounsi Y, Kaur K, Nassim A, Mandoza-Santoyo F, Matoba O. Speckle denoising techniques in imaging systems. J Opt. 2020; 22(6):063001.
    [213] Zuo C, Chen Q, Qu W, Asundi A. Phase aberration compensation in digital holographic microscopy based on principal component analysis. Opt Lett. 2013; 38(10):1724–6.
    [214] Sun J, Chen Q, Zhang Y, Zuo C. Optimal principal component analysis-based numerical phase aberration compensation method for digital holography. Opt Lett. 2016; 41(6):1293–6.
    [215] Li Y, Di J, Wang K, Wang S, Zhao J. Classification of cell morphology with quantitative phase microscopy and machine learning. Opt Express. 2020; 28(16):23916–27.
    [216] Park Y, Best CA, Badizadegan K, Dasari RR, Feld MS, Kuriabova T, Henle ML, Levine AJ, Popescu G. Measurement of red blood cell mechanics during morphological changes. Proc Natl Acad Sci. 2010; 107(15):6731–6.
    [217] Ligthart ST, Coumans FA, Bidard F-C, Simkens LH, Punt CJ, De Groot MR, Attard G, de Bono JS, Pierga J-Y, Terstappen LW. Circulating tumor cells count and morphological features in breast, colorectal and prostate cancer. PloS ONE. 2013; 8(6):67148.
    [218] Summers K, Kirschner MW. Characteristics of the polar assembly and disassembly of microtubules observed in vitro by darkfield light microscopy. J Cell Biol. 1979; 83(1):205–17.
    [219] Rheinberg J. On an addition to the methods of microscopical research, by a new way optically producing color-contrast between an object and its background, or between definite parts of the object itself. Jpn Soc Electron Microsc. 1896; 16:373–88.
    [220] Fan X, Healy JJ, O’Dwyer K, Hennelly BM. Label-free color staining of quantitative phase images of biological cells by simulated rheinberg illumination. Appl Opt. 2019; 58(12):3104–14.
    [221] Salmon E, Tran P. High-resolution video-enhanced differential interference contrast light microscopy. Methods Cell Biol. 2007; 81:335–64.
    [222] Guo K, Bian Z, Dong S, Nanda P, Wang YM, Zheng G. Microscopy illumination engineering using a low-cost liquid crystal display. Biomed Opt Express. 2015; 6(2):574–9.
    [223] Lee D, Ryu S, Kim U, Jung D, Joo C. Color-coded led microscopy for multi-contrast and quantitative phase-gradient imaging. Biomed Opt Express. 2015; 6(12):4912–22.
    [224] Fan Y, Sun J, Chen Q, Zhang J, Zuo C. Wide-field anti-aliased quantitative differential phase contrast microscopy. Opt Express. 2018; 26(19):25129–46.
    [225] Zheng G, Shen C, Jiang S, Song P, Yang C. Concept, implementations and applications of fourier ptychography. Nat Rev Phys. 2021; 3:1–17.
    [226] Bian Z, Dong S, Zheng G. Adaptive system correction for robust fourier ptychographic imaging. Opt Express. 2013; 21(26):32400–10.
    [227] Zuo C, Sun J, Chen Q. Adaptive step-size strategy for noise-robust fourier ptychographic microscopy. Opt Express. 2016; 24(18):20724–44.
    [228] Hamilton D, Sheppard C. Differential phase contrast in scanning optical microscopy. J Microsc. 1984; 133(1):27–39.
    [229] Barty A, Nugent K, Paganin D, Roberts A. Quantitative optical phase microscopy. Opt Lett. 1998; 23(11):817–9.
    [230] Streibl N. Phase imaging by the transport equation of intensity. Opt Commun. 1984; 49(1):6–10.
    [231] Kou SS, Waller L, Barbastathis G, Marquet P, Depeursinge C, Sheppard CJ. Quantitative phase restoration by direct inversion using the optical transfer function. Opt Lett. 2011; 36(14):2671–3.
    [232] Gao P, Pedrini G, Zuo C, Osten W. Phase retrieval using spatially modulated illumination. Opt Lett. 2014; 39(12):3615–8.
    [233] Kou SS, Waller L, Barbastathis G, Sheppard CJ. Transport-of-intensity approach to differential interference contrast (ti-dic) microscopy for quantitative phase imaging. Opt Lett. 2010; 35(3):447–9.
    [234] Zuo C, Chen Q, Qu W, Asundi A. High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Opt Express. 2013; 21(20):24060–75.
    [235] Zuo C, Chen Q, Qu W, Asundi A. Noninterferometric single-shot quantitative phase microscopy. Opt Lett. 2013; 38(18):3538–41.
    [236] Zuo C, Chen Q, Huang L, Asundi A. Phase discrepancy analysis and compensation for fast fourier transform based solution of the transport of intensity equation. Opt Express. 2014; 22(14):17172–86.
    [237] Zuo C, Chen Q, Tian L, Waller L, Asundi A. Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective. Opt Lasers Eng. 2015; 71:20–32.
    [238] Zuo C, Chen Q, Yu Y, Asundi A. Transport-of-intensity phase imaging using savitzky-golay differentiation filter-theory and applications. Opt Express. 2013; 21(5):5346–62.
    [239] Lu L, Fan Y, Sun J, Zhang J, Wu X, Chen Q, Zuo C. Accurate quantitative phase imaging by the transport of intensity equation: a mixed-transfer-function approach. Opt Lett. 2021; 46(7):1740–3.
    [240] Gureyev T, Roberts A, Nugent K. Partially coherent fields, the transport-of-intensity equation, and phase uniqueness. J Opt Soc Am A. 1995; 12(9):1942–6.
    [241] Gureyev T, Roberts A, Nugent K. Phase retrieval with the transport-of-intensity equation: matrix solution with use of zernike polynomials. J Opt Soc Am A. 1995; 12(9):1932–41.
    [242] Gureyev TE, Nugent KA. Phase retrieval with the transport-of-intensity equation. ii. orthogonal series solution for nonuniform illumination. J Opt Soc Am A. 1996; 13(8):1670–82.
    [243] Lu L, Sun J, Zhang J, Fan Y, Chen Q, Zuo C. Quantitative phase imaging camera with a weak diffuser. Front Phys. 2019; 7:77.
    [244] Ichikawa K, Lohmann AW, Takeda M. Phase retrieval based on the irradiance transport equation and the fourier transform method: experiments. Appl Opt. 1988; 27(16):3433–6.
    [245] Gureyev TE, Nugent KA. Rapid quantitative phase imaging using the transport of intensity equation. Opt Commun. 1997; 133(1-6):339–46.
    [246] Zuo C, Sun J, Li J, Zhang J, Asundi A, Chen Q. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep. 2017; 7(1):1–22.
    [247] Li J, Chen Q, Zhang J, Zhang Y, Lu L, Zuo C. Efficient quantitative phase microscopy using programmable annular led illumination. Biomed Opt Express. 2017; 8(10):4687–705.
    [248] Barone-Nugent E, Barty A, Nugent K. Quantitative phase-amplitude microscopy I: optical microscopy. J Microsc. 2002; 206(3):194–203.
    [249] Sheppard CJ. Defocused transfer function for a partially coherent microscope and application to phase retrieval. J Opt Soc Am A. 2004; 21(5):828–31.
    [250] Bertero M, Boccacci P. Introduction to Inverse Problems in Imaging: CRC press; 2020.
    [251] Hamilton D, Sheppard C, Wilson T. Improved imaging of phase gradients in scanning optical microscopy. J Microsc. 1984; 135(3):275–86.
    [252] Garcia-Sucerquia J, Xu W, Jericho M, Kreuzer HJ. Immersion digital in-line holographic microscopy. Opt Lett. 2006; 31(9):1211–3.
    [253] Ozcan A, McLeod E. Lensless imaging and sensing. Annu Rev Biomed Eng. 2016; 18:77–102.
    [254] Su T-W, Erlinger A, Tseng D, Ozcan A. Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy. Anal Chem. 2010; 82(19):8307–12.
    [255] Cui X, Lee LM, Heng X, Zhong W, Sternberg PW, Psaltis D, Yang C. Lensless high-resolution on-chip optofluidic microscopes for caenorhabditis elegans and cell imaging. Proc Natl Acad Sci. 2008; 105(31):10670–5.
    [256] Song P, Wang R, Zhu J, Wang T, Bian Z, Zhang Z, Hoshino K, Murphy M, Jiang S, Guo C, et al. Super-resolved multispectral lensless microscopy via angle-tilted, wavelength-multiplexed ptychographic modulation. Opt Lett. 2020; 45(13):3486–9.
    [257] Bishara W, Su T-W, Coskun AF, Ozcan A. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt Express. 2010; 18(11):11181–91.
    [258] Greenbaum A, Zhang Y, Feizi A, Chung P-L, Luo W, Kandukuri SR, Ozcan A. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci Transl Med. 2014; 6(267):267ra175.
    [259] Luo W, Greenbaum A, Zhang Y, Ozcan A. Synthetic aperture-based on-chip microscopy. Light: Sci Appl. 2015; 4(3):261.
    [260] Greenbaum A, Ozcan A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt Express. 2012; 20(3):3129–43.
    [261] Bao P, Zhang F, Pedrini G, Osten W. Phase retrieval using multiple illumination wavelengths. Opt Lett. 2008; 33(4):309–11.
    [262] Gorthi SS, Schonbrun E. Phase imaging flow cytometry using a focus-stack collecting microscope. Opt Lett. 2012; 37(4):707–9.
    [263] Guizar-Sicairos M, Thurman ST, Fienup JR. Efficient subpixel image registration algorithms. Opt Lett. 2008; 33(2):156–8.
    [264] Sheppard CJ. Three-dimensional phase imaging with the intensity transport equation. Appl Opt. 2002; 41(28):5951–5.
    [265] Neshev D, Aharonovich I. Optical metasurfaces: new generation building blocks for multi-functional optics. Light: Sci Appl. 2018; 7(1):1–5.
    [266] Su V-C, Chu CH, Sun G, Tsai DP. Advances in optical metasurfaces: fabrication and applications. Opt Express. 2018; 26(10):13148–82.
    [267] Rivenson Y, Göröcs Z, Günaydin H, Zhang Y, Wang H, Ozcan A. Deep learning microscopy. Optica. 2017; 4(11):1437–43.
    [268] Darriba D, Taboada GL, Doallo R, Posada D. jmodeltest 2: more models, new heuristics and parallel computing. Nat Methods. 2012; 9(8):772.
    [269] Fox GC, Williams RD, Messina GC. Parallel Computing Works!: Elsevier; 2014.
    [270] Attiya H, Welch J. Distributed Computing: Fundamentals, Simulations, and Advanced Topics vol. 19: Wiley; 2004.
    [271] Zhang Y, Gao Q, Gao L, Wang C. imapreduce: A distributed computing framework for iterative computation. J Grid Comput. 2012; 10(1):47–68.
    [272] Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A, Stoica I, et al. A view of cloud computing. Commun ACM. 2010; 53(4):50–8.
    [273] Zhang Q, Cheng L, Boutaba R. Cloud computing: state-of-the-art and research challenges. J Internet Serv Appl. 2010; 1(1):7–18.
  • 加载中
图(1)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  1
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 录用日期:  2021-07-22
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回