The challenges of modern computing and new opportunities for optics
-
摘要: In recent years, the explosive development of artificial intelligence implementing by artificial neural networks (ANNs) creates inconceivable demands for computing hardware. However, conventional computing hardware based on electronic transistor and von Neumann architecture cannot satisfy such an inconceivable demand due to the unsustainability of Moore's Law and the failure of Dennard's scaling rules. Fortunately, analog optical computing offers an alternative way to release unprecedented computational capability to accelerate varies computing drained tasks. In this article, the challenges of the modern computing technologies and potential solutions are briefly explained in Chapter 1. In Chapter 2, the latest research progresses of analog optical computing are separated into three directions:vector/matrix manipulation, reservoir computing and photonic Ising machine. Each direction has been explicitly summarized and discussed. The last chapter explains the prospects and the new challenges of analog optical computing.
-
关键词:
Abstract: In recent years, the explosive development of artificial intelligence implementing by artificial neural networks (ANNs) creates inconceivable demands for computing hardware. However, conventional computing hardware based on electronic transistor and von Neumann architecture cannot satisfy such an inconceivable demand due to the unsustainability of Moore’s Law and the failure of Dennard’s scaling rules. Fortunately, analog optical computing offers an alternative way to release unprecedented computational capability to accelerate varies computing drained tasks. In this article, the challenges of the modern computing technologies and potential solutions are briefly explained in Chapter 1. In Chapter 2, the latest research progresses of analog optical computing are separated into three directions: vector/matrix manipulation, reservoir computing and photonic Ising machine. Each direction has been explicitly summarized and discussed. The last chapter explains the prospects and the new challenges of analog optical computing. -
[1] Dennard RH, Gaensslen FH, Yu H-N, Rideout VL, Bassous E, LeBlanc AR. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid State Circuits. 1974;9(5):256–68. https://doi.org/10.1109/JSSC.1974.1050511. [2] Tallents G, Wagenaars E, Pert G. Lithography at EUV wavelengths. Nat Photonics. 2010;4(12):809–11. [3] Fan D, Ekinci Y. Photolithography reaches 6 nm half-pitch using EUV light. In: Extreme Ultraviolet (EUV) Lithography VII: International Society for Optics and Photonics. Bellingham, Washington USA: 2016. p. 97761V. [4] Lee H, Yu L-E, Ryu S-W, Han J-W, Jeon K, Jang D-Y, et al. Sub-5nm all-around gate FinFET for ultimate scaling. In: 2006 Symposium on VLSI technology, 2006 digest of technical papers; 2006. p. 58–9. [5] Shrestha A, Mahmood A. Review of deep learning algorithms and architectures. IEEE Access. 2019;7:53040–65. https://doi.org/10.1109/ACCESS.2019.2912200. [6] Shoeybi M, Patwary M, Puri R, LeGresley P, Casper J, Catanzaro B. Megatron-LM: Training multi-billion parameter language models using model parallelism. ArXiv190908053 Cs. 2020; [7] AI and Compute. OpenAI. 2018. https://openai.com/blog/ai-and-compute/: online. [8] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. [9] Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM; 1999. p. 850–5. [10] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324. Accessed 23 Mar 2021. [11] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60(6):84–90. https://doi.org/10.1145/3065386. [12] International Technology Roadmap for Semiconductors. 2011. http://www.itrs.net: online. [13] Franklin AD. The road to carbon nanotube transistors. Nature. 2013;498(7455):443–4. [14] Hutchby JA, Bourianoff GI, Zhirnov VV, Brewer JE. Extending the road beyond CMOS. IEEE Circuits Devices Mag. Washington, D.C: 2002;18(2):28–41. [15] Nikonov DE, Young IA. Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc IEEE. 2013;101(12):2498–533. [16] Chen A. Beyond-CMOS technology roadmap: The ConFab; 2015. [17] Ahopelto J, Ardila G, Baldi L, Balestra F, Belot D, Fagas G, et al. NanoElectronics roadmap for Europe: from nanodevices and innovative materials to system integration. Solid State Electron. 2019;155:7–19. [18] Roy K, Chakraborty I, Ali M, Ankit A, Agrawal A. In-memory computing in emerging memory technologies for machine learning: an overview. In: 2020 57th ACM/IEEE Design Automation Conference (DAC); 2020. p. 1–6. [19] Ankit A, Hajj IE, Chalamalasetti SR, Ndu G, Foltin M, Williams RS, et al. PUMA: a programmable ultra-efficient memristor-based accelerator for machine learning inference. In: Proceedings of the twenty-fourth international conference on architectural support for programming languages and operating systems. New York: Association for Computing Machinery; 2019. p. 715–31. (ASPLOS ‘19). [20] Wong H-SP, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B, et al. Phase change memory. Proc IEEE. 2010;98(12):2201–27. [21] Wong H-SP, Lee H-Y, Yu S, Chen Y-S, Wu Y, Chen P-S, et al. Metal–Oxide RRAM. Proc IEEE. 2012;100(6):1951–70. [22] Ambs P. Optical computing: a 60-year adventure. Adv Opt Technol. 2010;2010:1–15. [23] Vander Lugt A. A review of optical data-processing techniques. Opt Acta Int J Opt. 1968;15(1):1–33. [24] Goodman JW, Dias AR, Woody LM. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt Lett. 1978;2(1):1–3. [25] Casasent D. Coherent optical pattern recognition: a review. Opt Eng. 1985;24(1):240126. [26] McCall S, Gibbs H, Venkatesan T. Optical transistor and bistability. J Opt Soc Am 1917–1983. 1975;65:1184. [27] Jain K, Pratt GW Jr. Optical transistor. Appl Phys Lett. 1976;28(12):719–21. https://doi.org/10.1063/1.88627. [28] Athale RA, Lee SH. Development of an optical parallel logic device and a half-adder circuit for digital optical processing. Opt Eng. 1979;18(5):185513. [29] Jenkins BK, Sawchuk AA, Strand TC, Forchheimer R, Soffer BH. Sequential optical logic implementation. Appl Opt. 1984;23(19):3455–64. [30] Tanida J, Ichioka Y. Optical-logic-array processor using shadowgrams. III. Parallel neighborhood operations and an architecture of an optical digital-computing system. JOSA A. 1985;2(8):1245–53. https://doi.org/10.1364/JOSAA.2.001245. [31] Tanida J, Ichioka Y. OPALS: optical parallel array logic system. Appl Opt. 1986;25(10):1565–70. https://doi.org/10.1364/AO.25.001565. [32] Awwal AAS, Karim MA. Polarization-encoded optical shadow-casting: direct implementation of a carry-free adder. Appl Opt. 1989;28(4):785–90. https://doi.org/10.1364/AO.28.000785. [33] Main T, Feuerstein RJ, Jordan HF, Heuring VP, Feehrer J, Love CE. Implementation of a general-purpose stored-program digital optical computer. Appl Opt. 1994;33(8):1619–28. Accessed 23 Mar 2021. [34] Miller DAB. Are optical transistors the logical next step? Nat Photonics. 2010;4(1):3–5. [35] Tamir DE, Shaked NT, Wilson PJ, Dolev S. High-speed and low-power electro-optical DSP coprocessor. JOSA A. 2009;26(8):A11–20. https://doi.org/10.1364/JOSAA.26.000A11. [36] Zhu W, Zhang L, Lu Y, Zhou P, Yang L. Design and experimental verification for optical module of optical vector-matrix multiplier. Appl Opt. Washington, D.C: 2013;52(18):4412–8. https://doi.org/10.1364/AO.52.004412. [37] Miller DAB. Self-configuring universal linear optical component [invited]. Photonics Res. 2013;1(1):1–15. https://doi.org/10.1364/PRJ.1.000001. [38] Shen Y, Skirlo S, Harris NC, Englund D, Soljačić M. On-chip optical neuromorphic computing. In: Conference on lasers and electro-optics (2016), paper SM3E2: Optical Society of America; 2016. p. SM3E.2. [39] Shen Y, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T, Hochberg M, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics. 2017;11(7):441–6. [40] Lightmatter. Lightmatter. Washington, D.C. https://lightmatter.co/: online. [41] Lightelligence - Empower AI with light. Lightelligence - Empower AI with light. https://www.lightelligence.ai: online. [42] Ramey C. Silicon photonics for artificial intelligence acceleration: HotChips 32. In: 2020 IEEE hot chips 32 symposium (HCS): IEEE Computer Society; 2020. p. 1–26. [43] Zhou J, Kim K, Lu W. Crossbar RRAM arrays: selector device requirements during read operation. IEEE Trans Electron Devices. 2014;61(5):1369–76. [44] Yang L, Ji R, Zhang L, Ding J, Xu Q. On-chip CMOS-compatible optical signal processor. Opt Express. 2012;20(12):13560–5. https://doi.org/10.1364/OE.20.013560. [45] Tait AN, de Lima TF, Zhou E, Wu AX, Nahmias MA, Shastri BJ, et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep. 2017;7(1):1–10. [46] Chakraborty I, Saha G, Sengupta A, Roy K. Toward fast neural computing using all-photonic phase change spiking neurons. Sci Rep. 2018;8(1):12980. https://doi.org/10.1038/s41598-018-31365-x. [47] Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature. 2019;569(7755):208–14. [48] Feldmann J, Youngblood N, Karpov M, Gehring H, Li X, Stappers M, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature. 2021;589(7840):52–8. https://doi.org/10.1038/s41586-020-03070-1. [49] Ríos C, Youngblood N, Cheng Z, Gallo ML, Pernice WHP, Wright CD, et al. In-memory computing on a photonic platform. Sci Adv. 2019;5(2):eaau5759. [50] Wu C, Yu H, Lee S, Peng R, Takeuchi I, Li M. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network. Nat Commun. 2021;12(1):96. [51] Chang J, Sitzmann V, Dun X, Heidrich W, Wetzstein G. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci Rep. 2018;8(1):1–10. [52] Miscuglio M, Hu Z, Li S, George JK, Capanna R, Dalir H, et al. Massively parallel amplitude-only Fourier neural network. Optica. 2020;7(12):1812–9. [53] Wu Y, Zhuang Z, Deng L, Liu Y, Xue Q, Ghassemlooy Z. Arbitrary multi-way parallel mathematical operations based on planar discrete metamaterials. Plasmonics. 2018;13(2):599–607. https://doi.org/10.1007/s11468-017-0550-0. [54] Liao K, Gan T, Hu X, Gong Q. AI-assisted on-chip nanophotonic convolver based on silicon metasurface. Nanophotonics. 2020;9(10):3315–22. https://doi.org/10.1515/nanoph-2020-0069. [55] George JK, Nejadriahi H, Sorger VJ. Towards on-chip optical FFTs for convolutional neural networks. In: 2017 IEEE International Conference on Rebooting Computing (ICRC); 2017. p. 1–4. [56] Park Y, Azaña J. Optical signal processors based on a time-spectrum convolution. Opt Lett. 2010;35(6):796–8. [57] Zhang X, Huo T, Wang C, Liao W, Chen T, Ai S, et al. Optical computing for optical coherence tomography. Sci Rep. 2016;6:37286. [58] Babashah H, Kavehvash Z, Khavasi A, Koohi S. Temporal analog optical computing using an on-chip fully reconfigurable photonic signal processor. Opt Laser Technol. 2019;111:66–74. [59] Huang Y, Zhang W, Yang F, Du J, He Z. Programmable matrix operation with reconfigurable time-wavelength plane manipulation and dispersed time delay. Opt Express. 2019;27(15):20456–67. https://doi.org/10.1364/OE.27.020456. [60] Xu X, Tan M, Corcoran B, Wu J, Boes A, Nguyen TG, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature. 2021;589(7840):44–51. [61] Lin X, Rivenson Y, Yardimci NT, Veli M, Luo Y, Jarrahi M, et al. All-optical machine learning using diffractive deep neural networks. Science. 2018;361(6406):1004–8. [62] Li J, Mengu D, Luo Y, Rivenson Y, Ozcan A. Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv Photonics. 2019;1(4):046001. [63] Mengu D, Luo Y, Rivenson Y, Ozcan A. Analysis of diffractive optical neural networks and their integration with electronic neural networks. IEEE J Sel Top Quantum Electron. 2020;15(1):1–14. [64] Yan T, Wu J, Zhou T, Xie H, Xu F, Fan J, et al. Fourier-space diffractive deep neural network. Phys Rev Lett. 2019;123(2):023901. https://doi.org/10.1103/PhysRevLett.123.023901. [65] Zhou T, Lin X, Wu J, Chen Y, Xie H, Li Y, et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat Photonics. 2021:1–7. [66] Maass W, Natschläger T, Markram H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 2002;14(11):2531–60. [67] Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science. 2004;304(5667):78–80. https://doi.org/10.1126/science.1091277. [68] Verstraeten D, Schrauwen B, d’Haene M, Stroobandt D. An experimental unification of reservoir computing methods. Neural Netw. 2007;20(3):391–403. https://doi.org/10.1016/j.neunet.2007.04.003. [69] Rodan A, Tino P. Minimum complexity echo state network. IEEE Trans Neural Netw. Piscataway, NJ USA: 2011;22(1):131–44. [70] Rodan A, Tiňo P. Simple deterministically constructed cycle reservoirs with regular jumps. Neural Comput. 2012;24(7):1822–52. [71] Bacciu D, Bongiorno A. Concentric ESN: assessing the effect of modularity in cycle reservoirs. In: 2018 International Joint Conference on Neural Networks (IJCNN): IEEE; 2018. p. 1–8. [72] Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Morthier G, Verstraeten D, et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun. 2014;5(1):1–6. [73] Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N, Takeda S, et al. Recent advances in physical reservoir computing: a review. Neural Netw. 2019;115:100–23. [74] Vlachas PR, Pathak J, Hunt BR, Sapsis TP, Girvan M, Ott E, et al. Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics. Neural Netw. 2020;126:191–217. [75] Antonik P, Duport F, Hermans M, Smerieri A, Haelterman M, Massar S. Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans Neural Netw Learn Syst. 2017;28(11):2686–98. https://doi.org/10.1109/TNNLS.2016.2598655. [76] Skibinsky-Gitlin ES, Alomar ML, Frasser CF, Canals V, Isern E, Roca M, et al. Cyclic Reservoir Computing with FPGA Devices for Efficient Channel Equalization. In: Rutkowski L, Scherer R, Korytkowski M, Pedrycz W, Tadeusiewicz R, Zurada JM, editors. Artificial intelligence and soft computing. Cham: Springer International Publishing; 2018. p. 226–34. (Lecture Notes in Computer Science). [77] Katumba A, Yin X, Dambre J, Bienstman P. A neuromorphic silicon photonics nonlinear equalizer for optical communications with intensity modulation and direct detection. J Light Technol. 2019;37(10):2232–9. [78] Argyris A, Bueno J, Fischer I. PAM-4 transmission at 1550 nm using photonic reservoir computing post-processing. IEEE Access. 2019;7:37017–25. [79] Da Ros F, Ranzini SM, Bülow H, Zibar D. Reservoir-computing based equalization with optical pre-processing for short-reach optical transmission. IEEE J Sel Top Quantum Electron. 2020;26(5):1–12. https://doi.org/10.1109/JSTQE.2020.2975607. [80] Li J, Lyu Y, Li X, Wang T, Dong X. Reservoir computing based equalization for radio over fiber system. In: 2021 23rd International Conference on Advanced Communication Technology (ICACT); 2021. p. 85–90. [81] Martinenghi R, Rybalko S, Jacquot M, Chembo YK, Larger L. Photonic nonlinear transient computing with multiple-delay wavelength dynamics. Phys Rev Lett. 2012;108(24):244101. [82] Deihimi A, Orang O, Showkati H. Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction. Energy. 2013;57:382–401. https://doi.org/10.1016/j.energy.2013.06.007. [83] Abreu Araujo F, Riou M, Torrejon J, Tsunegi S, Querlioz D, Yakushiji K, et al. Role of non-linear data processing on speech recognition task in the framework of reservoir computing. Sci Rep. 2020;10(1):328. https://doi.org/10.1038/s41598-019-56991-x. [84] Pathak J, Hunt B, Girvan M, Lu Z, Ott E. Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys Rev Lett. 2018;120(2):024102. https://doi.org/10.1103/PhysRevLett.120.024102. [85] Zhou H, Huang J, Lu F, Thiyagalingam J, Kirubarajan T. Echo state kernel recursive least squares algorithm for machine condition prediction. Mech Syst Signal Process. 2018;111:68–86. [86] Griffith A, Pomerance A, Gauthier DJ. Forecasting chaotic systems with very low connectivity reservoir computers. Chaos Interdiscip J Nonlinear Sci. 2019;29(12):123108. [87] Antonik P, Marsal N, Brunner D, Rontani D. Human action recognition with a large-scale brain-inspired photonic computer. Nat Mach Intell. Manhattan, New York: 2019;1(11):530–7. [88] Arcomano T, Szunyogh I, Pathak J, Wikner A, Hunt BR, Ott E. A machine learning-based global atmospheric forecast model. Geophys Res Lett. 2020;47(9):e2020GL087776. [89] Fourati R, Ammar B, Sanchez-Medina J, Alimi AM. Unsupervised learning in reservoir computing for eeg-based emotion recognition. IEEE Trans Affect Comput. 2020. [90] Del Ser J, Lana I, Manibardo EL, Oregi I, Osaba E, Lobo JL, et al. Deep echo state networks for short-term traffic forecasting: Performance comparison and statistical assessment. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC): IEEE; 2020. p. 1–6. [91] Zhou Z, Liu L, Chandrasekhar V, Zhang J, Yi Y. Deep reservoir computing meets 5G MIMO-OFDM systems in symbol detection. In: Proceedings of the AAAI Conference on Artificial Intelligence; 2020. p. 1266–73. [92] Gallicchio C, Micheli A, Pedrelli L. Deep reservoir computing: a critical experimental analysis. Neurocomputing. 2017;268:87–99. [93] Sun W, Su Y, Wu X, Wu X, Zhang Y. EEG denoising through a wide and deep echo state network optimized by UPSO algorithm. Appl Soft Comput. 2021;105:107149. [94] Xue Y, Yang L, Haykin S. Decoupled echo state networks with lateral inhibition. Neural Netw. 2007;20(3):365–76. https://doi.org/10.1016/j.neunet.2007.04.014. [95] der Sande GV, Brunner D, Soriano MC. Advances in photonic reservoir computing. Nanophotonics. 2017;6(3):561–76. [96] Gallicchio C, Micheli A, Pedrelli L. Design of deep echo state networks. Neural Netw. 2018;108:33–47. [97] Gallicchio C, Micheli A. Richness of deep echo state network dynamics. In: Rojas I, Joya G, Catala A, editors. Advances in computational intelligence. Cham: Springer International Publishing; 2019. p. 480–91. (Lecture Notes in Computer Science). [98] Gallicchio C, Micheli A. Deep echo state network (DeepESN): a brief survey. ArXiv171204323 Cs Stat. 2020; [99] Dale M, O’Keefe S, Sebald A, Stepney S, Trefzer MA. Reservoir computing quality: connectivity and topology. Nat Comput. 2021;20(2):205–16. [100] Vandoorne K, Dierckx W, Schrauwen B, Verstraeten D, Baets R, Bienstman P, et al. Toward optical signal processing using photonic reservoir computing. Opt Express. 2008;16(15):11182–92. https://doi.org/10.1364/OE.16.011182. [101] Bauduin M, Massar S, Horlin F. Non-linear satellite channel equalization based on a low complexity Echo State Network. In: 2016 Annual Conference on Information Science and Systems (CISS); 2016. p. 99–104. [102] Vandoorne K, Dambre J, Verstraeten D, Schrauwen B, Bienstman P. Parallel reservoir computing using optical amplifiers. IEEE Trans Neural Netw. 2011;22(9):1469–81. [103] Salehi MR, Dehyadegari L. Optical signal processing using photonic reservoir computing. J Mod Opt. 2014;61(17):1442–51. [104] Brunner D, Fischer I. Reconfigurable semiconductor laser networks based on diffractive coupling. Opt Lett. 2015;40(16):3854–7. https://doi.org/10.1364/OL.40.003854. [105] Bueno J, Maktoobi S, Froehly L, Fischer I, Jacquot M, Larger L, et al. Reinforcement learning in a large-scale photonic recurrent neural network. Optica. 2018;5(6):756–60. [106] Maktoobi S, Froehly L, Andreoli L, Porte X, Jacquot M, Larger L, et al. Diffractive coupling for photonic networks: how big can we go? IEEE J Sel Top Quantum Electron. Piscataway, NJ: 2019;26(1):1–8. [107] Andreoli L, Porte X, Chrétien S, Jacquot M, Larger L, Brunner D. Boolean learning under noise-perturbations in hardware neural networks. Nanophotonics. 2020;9(13):4139–47. [108] Dong J, Gigan S, Krzakala F, Wainrib G. Scaling up Echo-State Networks with multiple light scattering. In: 2018 IEEE Statistical Signal Processing Workshop (SSP): IEEE; 2018. p. 448–52. [109] Popoff SM, Lerosey G, Carminati R, Fink M, Boccara AC, Gigan S. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett. 2010;104(10):100601. [110] Popoff SM, Lerosey G, Fink M, Boccara AC, Gigan S. Controlling light through optical disordered media: transmission matrix approach. New J Phys. 2011;13(12):123021. [111] Dong J, Rafayelyan M, Krzakala F, Gigan S. Optical reservoir computing using multiple light scattering for chaotic systems prediction. IEEE J Sel Top Quantum Electron. 2019;26(1):1–12. [112] Rafayelyan M, Dong J, Tan Y, Krzakala F, Gigan S. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys Rev X. 2020;10(4):041037. https://doi.org/10.1103/PhysRevX.10.041037. [113] Paudel U, Luengo-Kovac M, Pilawa J, Shaw TJ, Valley GC. Classification of time-domain waveforms using a speckle-based optical reservoir computer. Opt Express. 2020;28(2):1225–37. https://doi.org/10.1364/OE.379264. [114] Brunner D, Penkovsky B, Marquez BA, Jacquot M, Fischer I, Larger L. Tutorial: photonic neural networks in delay systems. J Appl Phys. Bellingham, Washington: 2018;124(15):152004. https://doi.org/10.1063/1.5042342. [115] Larger L, Soriano MC, Brunner D, Appeltant L, Gutiérrez JM, Pesquera L, et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt Express. 2012;20(3):3241–9. https://doi.org/10.1364/OE.20.003241. [116] Paquot Y, Dambre J, Schrauwen B, Haelterman M, Massar S. Reservoir computing: a photonic neural network for information processing. In: Nonlinear optics and applications IV: International Society for Optics and Photonics; 2010. p. 77280B. [117] Duport F, Schneider B, Smerieri A, Haelterman M, Massar S. All-optical reservoir computing. Opt Express. 2012;20(20):22783–95. [118] Chembo YK. Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems. Chaos Interdiscip J Nonlinear Sci. 2020;30(1):013111. [119] Dejonckheere A, Duport F, Smerieri A, Fang L, Oudar J-L, Haelterman M, et al. All-optical reservoir computer based on saturation of absorption. Opt Express. 2014;22(9):10868–81. [120] Brunner D, Soriano MC, Mirasso CR, Fischer I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun. 2013;4(1):1–7. [121] Nakayama J, Kanno K, Uchida A. Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal. Opt Express. 2016;24(8):8679–92. https://doi.org/10.1364/OE.24.008679. [122] Bueno J, Brunner D, Soriano MC, Fischer I. Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback. Opt Express. 2017;25(3):2401–12. https://doi.org/10.1364/OE.25.002401. [123] Vatin J, Rontani D, Sciamanna M. Enhanced performance of a reservoir computer using polarization dynamics in VCSELs. Opt Lett. 2018;43(18):4497–500. [124] Cuevas GD l, Cubitt TS. Simple universal models capture all classical spin physics. Science. 2016;351(6278):1180–3. [125] Lucas A. Ising formulations of many NP problems. Front Phys. 2014;2. [126] Johnson MW, Amin MHS, Gildert S, Lanting T, Hamze F, Dickson N, et al. Quantum annealing with manufactured spins. Nature. 2011;473(7346):194–8. https://doi.org/10.1038/nature10012. [127] Kim K, Chang M-S, Korenblit S, Islam R, Edwards EE, Freericks JK, et al. Quantum simulation of frustrated Ising spins with trapped ions. Nature. 2010;465(7298):590–3. https://doi.org/10.1038/nature09071. [128] Mahboob I, Okamoto H, Yamaguchi H. An electromechanical Ising Hamiltonian. Sci Adv. 2016;2(6):e1600236. [129] Yamaoka M, Yoshimura C, Hayashi M, Okuyama T, Aoki H, Mizuno H. A 20k-spin ising chip to solve combinatorial optimization problems with CMOS annealing. IEEE J Solid State Circuits. 2016;51(1):303–9. [130] Cai F, Kumar S, Van Vaerenbergh T, Liu R, Li C, Yu S, et al. Harnessing intrinsic noise in memristor hopfield neural networks for combinatorial optimization. ArXiv190311194 Cs. 2019; [131] Kalinin KP, Berloff NG. Simulating Ising and $n$-state planar Potts models and external fields with nonequilibrium condensates. Phys Rev Lett. 2018;121(23):235302. https://doi.org/10.1103/PhysRevLett.121.235302. [132] Wang Z, Marandi A, Wen K, Byer RL, Yamamoto Y. Coherent Ising machine based on degenerate optical parametric oscillators. Phys Rev A. 2013;88(6):063853. [133] Marandi A, Wang Z, Takata K, Byer RL, Yamamoto Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat Photonics. 2014;8(12):937–42. https://doi.org/10.1038/nphoton.2014.249. [134] Takata K, Marandi A, Hamerly R, Haribara Y, Maruo D, Tamate S, et al. A 16-bit coherent Ising machine for one-dimensional ring and cubic graph problems. Sci Rep. 2016;6(1):34089. https://doi.org/10.1038/srep34089. [135] Inagaki T, Haribara Y, Igarashi K, Sonobe T, Tamate S, Honjo T, et al. A coherent Ising machine for 2000-node optimization problems. Science. 2016;354(6312):603–6. [136] McMahon PL, Marandi A, Haribara Y, Hamerly R, Langrock C, Tamate S, et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science. 2016;354(6312):614–7. [137] Inagaki T, Inaba K, Hamerly R, Inoue K, Yamamoto Y, Takesue H. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat Photonics. 2016;10(6):415–9. https://doi.org/10.1038/nphoton.2016.68. [138] Takesue H, Inagaki T. 10 GHz clock time-multiplexed degenerate optical parametric oscillators for a photonic Ising spin network. Opt Lett. 2016;41(18):4273–6. https://doi.org/10.1364/OL.41.004273. [139] Yamamoto Y, Aihara K, Leleu T, Kawarabayashi K, Kako S, Fejer M, et al. Coherent Ising machines—optical neural networks operating at the quantum limit. Npj Quantum Inf. 2017;3(1):1–15. [140] Takesue H, Inagaki T, Inaba K, Ikuta T, Honjo T. Large-scale coherent ising machine. J Phys Soc Jpn. 2019;88(6):061014. https://doi.org/10.7566/JPSJ.88.061014. [141] Hamerly R, Inagaki T, McMahon PL, Venturelli D, Marandi A, Onodera T, et al. Experimental investigation of performance differences between coherent Ising machines and a quantum annealer. Sci Adv. 2019;5(5):eaau0823. [142] Cen Q, Hao T, Ding H, Guan S, Qin Z, Xu K, et al. Microwave photonic ising machine. ArXiv201100064 Phys. 2020 [143] Böhm F, Verschaffelt G, Van der Sande G. A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems. Nat Commun. 2019;10(1):3538. [144] Babaeian M, Nguyen DT, Demir V, Akbulut M, Blanche P-A, Kaneda Y, et al. A single shot coherent Ising machine based on a network of injection-locked multicore fiber lasers. Nat Commun. 2019;10(1):3516. [145] Pierangeli D, Marcucci G, Conti C. Large-scale photonic Ising machine by spatial light modulation. Phys Rev Lett. 2019;122(21):213902. [146] Pierangeli D, Pierangeli D, Marcucci G, Marcucci G, Conti C, Conti C. Adiabatic evolution on a spatial-photonic Ising machine. Optica. 2020;7(11):1535–43. [147] Pierangeli D, Marcucci G, Brunner D, Conti C. Noise-enhanced spatial-photonic Ising machine. Nanophotonics. 2020;3:4109–16. [148] Pierangeli D, Rafayelyan M, Conti C, Gigan S. Scalable spin-glass optical simulator. Phys Rev Appl. 2021;15(3):034087. https://doi.org/10.1103/PhysRevApplied.15.034087. [149] Prabhu M, Roques-Carmes C, Roques-Carmes C, Shen Y, Shen Y, Shen Y, et al. Accelerating recurrent Ising machines in photonic integrated circuits. Optica. 2020;7(5):551–8. [150] Roques-Carmes C, Shen Y, Zanoci C, Prabhu M, Atieh F, Jing L, et al. Heuristic recurrent algorithms for photonic Ising machines. Nat Commun. 2020;11(1):249. https://doi.org/10.1038/s41467-019-14096-z. [151] Okawachi Y, Yu M, Jang JK, Ji X, Zhao Y, Kim BY, et al. Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat Commun. 2020;11(1):4119. https://doi.org/10.1038/s41467-020-17919-6. [152] Okawachi Y, Yu M, Luke K, Carvalho DO, Ramelow S, Farsi A, et al. Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. Opt Lett. 2015;40(22):5267–70. [153] Kako S, Leleu T, Inui Y, Khoyratee F, Reifenstein S, Yamamoto Y. Coherent ising machines with error correction feedback. Adv Quantum Technol. 2020;3(11):2000045. [154] Kumar S, Zhang H, Huang Y-P. Large-scale Ising emulation with four body interaction and all-to-all connections. Commun Phys. 2020;3(1):1–9. [155] Takesue H, Inaba K, Inagaki T, Ikuta T, Yamada Y, Honjo T, et al. Simulating Ising spins in external magnetic fields with a network of degenerate optical parametric oscillators. Phys Rev Appl. 2020;13(5):054059. https://doi.org/10.1103/PhysRevApplied.13.054059. [156] Tezak N, Van Vaerenbergh T, Pelc JS, Mendoza GJ, Kielpinski D, Mabuchi H, et al. Integrated coherent Ising machines based on self-phase modulation in microring resonators. IEEE J Sel Top Quantum Electron. 2020;26(1):1–15. [157] Clements WR, Humphreys PC, Metcalf BJ, Kolthammer WS, Walmsley IA. Optimal design for universal multiport interferometers. Optica. 2016;3(12):1460–5. [158] Bell BA, Wang K, Solntsev AS, Neshev DN, Sukhorukov AA, Eggleton BJ. Spectral photonic lattices with complex long-range coupling. Optica. 2017;4(11):1433–6. https://doi.org/10.1364/OPTICA.4.001433. [159] Wang K, Bell BA, Solntsev AS, Neshev DN, Eggleton BJ, Sukhorukov AA. Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion. Light Sci Appl. 2020;9(1):132. [160] Liu K, Ye CR, Khan S, Sorger VJ. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photonics Rev. 2015;9(2):172–94. [161] Zhou Z, Yin B, Deng Q, Li X, Cui J. Lowering the energy consumption in silicon photonic devices and systems [invited]. Photonics Res. 2015;3(5):B28–46. https://doi.org/10.1364/PRJ.3.000B28. [162] Chaisakul P, Marris-Morini D, Frigerio J, Chrastina D, Rouifed M-S, Cecchi S, et al. Integrated germanium optical interconnects on silicon substrates. Nat Photonics. 2014;8(6):482–8. [163] Webster M, Gothoskar P, Patel V, Piede D, Anderson S, Tummidi R, et al. An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters. In: 11th International Conference on Group IV Photonics (GFP); 2014. p. 1–2. [164] Xuan Z, Ma Y, Liu Y, Ding R, Li Y, Ophir N, et al. Silicon microring modulator for 40 Gb/s NRZ-OOK metro networks in O-band. Opt Express. 2014;22(23):28284–91. [165] Dubé-Demers R, LaRochelle S, Shi W. Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator. Optica. 2016;3(6):622–7. [166] Chaisakul P, Vakarin V, Frigerio J, Chrastina D, Isella G, Vivien L, et al. Recent progress on Ge/SiGe quantum well optical modulators, detectors, and emitters for optical interconnects. Photonics. 2019;6(1):24. [167] Romanova A, Barzdenas V. A review of modern CMOS transimpedance amplifiers for OTDR applications. Electronics. 2019;8(10):1073. [168] Kobayashi KW. State-of-the-art 60 GHz, 3.6 k-Ohm transimpedance amplifier for 40 Gb/s and beyond. In: IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2003: IEEE; 2003. p. 55–8. Accessed 8 May 2021. [169] Data Converters Overview TI.com. https://www.ti.com/data-converters/overview.html: online. Accessed 8 May 2021 [170] High Speed A/D Converters >10 MSPS Analog Devices. https://www.analog.com/en/products/analog-to-digital-converters/high-speed-ad-10msps.html: online. [171] Juanda FNU, Shu W, Chang JS. A 10-GS/s 4-bit single-core digital-to-analog converter for cognitive ultrawidebands. IEEE Trans Circuits Syst II Express Briefs. 2017;64(1):16–20.
点击查看大图
计量
- 文章访问数: 238
- HTML全文浏览量: 6
- PDF下载量: 93
- 被引次数: 0