留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spontaneous emission in micro- or nanophotonic structures

Zhiyuan Qian Lingxiao Shan Xinchen Zhang Qi Liu Yun Ma Qihuang Gong Ying Gu

Zhiyuan Qian, Lingxiao Shan, Xinchen Zhang, Qi Liu, Yun Ma, Qihuang Gong, Ying Gu. Spontaneous emission in micro- or nanophotonic structures[J]. PhotoniX. doi: 10.1186/s43074-021-00043-z
引用本文: Zhiyuan Qian, Lingxiao Shan, Xinchen Zhang, Qi Liu, Yun Ma, Qihuang Gong, Ying Gu. Spontaneous emission in micro- or nanophotonic structures[J]. PhotoniX. doi: 10.1186/s43074-021-00043-z
Zhiyuan Qian, Lingxiao Shan, Xinchen Zhang, Qi Liu, Yun Ma, Qihuang Gong, Ying Gu. Spontaneous emission in micro- or nanophotonic structures[J]. PhotoniX. doi: 10.1186/s43074-021-00043-z
Citation: Zhiyuan Qian, Lingxiao Shan, Xinchen Zhang, Qi Liu, Yun Ma, Qihuang Gong, Ying Gu. Spontaneous emission in micro- or nanophotonic structures[J]. PhotoniX. doi: 10.1186/s43074-021-00043-z

Spontaneous emission in micro- or nanophotonic structures

doi: 10.1186/s43074-021-00043-z
基金项目: 

This work is supported by the National Natural Science Foundation of China under Grants No. 11974032, No. 11525414, and No. 11734001, and by the Key R&D Program of Guangdong Province under Grant No. 2018B030329001.

Spontaneous emission in micro- or nanophotonic structures

Funds: 

This work is supported by the National Natural Science Foundation of China under Grants No. 11974032, No. 11525414, and No. 11734001, and by the Key R&D Program of Guangdong Province under Grant No. 2018B030329001.

  • 摘要: Single-photon source in micro- or nanoscale is the basic building block of on-chip quantum information and scalable quantum network. Enhanced spontaneous emission based on cavity quantum electrodynamics (CQED) is one of the key principles of realizing single-photon sources fabricated by micro- or nanophotonic cavities. Here we mainly review the spontaneous emission of single emitters in micro- or nanostructures, such as whispering gallery microcavities, photonic crystals, plasmon nanostructures, metamaterials, and their hybrids. The researches have enriched light-matter interaction as well as made great influence in single-photon source, photonic circuit, and on-chip quantum information.
      关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Purcell E. Spontaneous emission probabilities at radio frequencies. Phys Rev. 1946; 69:681.
    [2] Haroche S, Kleppner D. Cavity quantum electrodynamics. Phys Today. 1989; 42(1):24–30.
    [3] Vahala KJ. Optical microcavities. Nature. 2003; 424:839–46.
    [4] Kimble HJ. The quantum internet. Nature. 2008; 453:1023–30.
    [5] Benson O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature. 2011; 480:193–9.
    [6] Jacob Z, Shalaev VM. Plasmonics goes quantum. Science. 2011; 334(6055):463–4. https://doi.org/10.1126/science.1211736. https://science.sciencemag.org/content/334/6055/463.full.pdf.
    [7] Tame MS, McEnery K, Özdemir Ş, Lee J, Maier SA, Kim M. Quantum plasmonics. Nat Phys. 2013; 9(6):329–40.
    [8] Sauvan C, Hugonin JP, Maksymov IS, Lalanne P. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. Phys Rev Lett. 2013; 110:237401. https://doi.org/10.1103/PhysRevLett.110.237401.
    [9] Zhu J, Ozdemir SK, Xiao Y-F, Li L, He L, Chen D-R, Yang L. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-q microresonator. Nat Photonics. 2010; 4(1):46.
    [10] Kiraz A, Michler P, Becher C, Gayral B, Imamoǧlu A, Zhang L, Hu E, Schoenfeld WV, Petroff PM. Cavity-quantum electrodynamics using a single inas quantum dot in a microdisk structure. Appl Phys Lett. 2001; 78(25):3932–4. https://doi.org/10.1063/1.1379987.
    [11] Kippenberg TJ, Spillane SM, Vahala KJ. Demonstration of ultra-high-q small mode volume toroid microcavities on a chip. Appl Phys Lett. 2004; 85(25):6113–5. https://doi.org/10.1063/1.1833556.
    [12] Akahane Y, Asano T, Song B-S, Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature. 2003; 425(6961):944–7. https://doi.org/10.1038/nature02063. Accessed 12 Jan 2021.
    [13] Asano T, Song B-S, Noda S. Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities. Opt Express. 2006; 14(5):1996. https://doi.org/10.1364/OE.14.001996. Accessed 22 Feb 2021.
    [14] Lakhani AM, Kim M-K, Lau EK, Wu MC. Plasmonic crystal defect nanolaser. Opt Express. 2011; 19(19):18237. https://doi.org/10.1364/OE.19.018237. Accessed 20 March 2021.
    [15] Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser. Nat Phys. 2006; 2(7):484–8. https://doi.org/10.1038/nphys343. Accessed 11 Jan 2021.
    [16] Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics. 2009; 3(11):654–7.
    [17] Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003; 424:824–30.
    [18] Maier SA. Plasmonics: Fundamentals and Applications. New York: Springer; 2007.
    [19] Chikkaraddy R, De Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016; 535(7610):127–30.
    [20] Lian H, Gu Y, Ren J, Zhang F, Wang L, Gong Q. Efficient single photon emission and collection based on excitation of gap surface plasmons. Phys Rev Lett. 2015; 114:193002. https://doi.org/10.1103/PhysRevLett.114.193002.
    [21] Jaynes ET, Cummings FW. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc IEEE. 1963; 51(1):89–109. https://doi.org/10.1109/PROC.1963.1664.
    [22] Guerlin C, Brion E, Esslinger T, Mølmer K. Cavity quantum electrodynamics with a rydberg-blocked atomic ensemble. Phys Rev A. 2010; 82:053832. https://doi.org/10.1103/PhysRevA.82.053832.
    [23] Sanchez-Mondragon JJ, Narozhny NB, Eberly JH. Theory of spontaneous-emission line shape in an ideal cavity. Phys Rev Lett. 1983; 51:550–3. https://doi.org/10.1103/PhysRevLett.51.550.
    [24] Hulet RG, Hilfer ES, Kleppner D. Inhibited spontaneous emission by a rydberg atom. Phys Rev Lett. 1985; 55:2137–40. https://doi.org/10.1103/PhysRevLett.55.2137.
    [25] Yokoyama H. Physics and device applications of optical microcavities. Science. 1992; 256(5053):66–70. https://doi.org/10.1126/science.256.5053.66.
    [26] Kimble HJ. Strong interactions of single atoms and photons in cavity QED. Phys Scr. 1998; T76(1):127. https://doi.org/10.1238/physica.topical.076a00127.
    [27] Nußmann S, Hijlkema M, Weber B, Rohde F, Rempe G, Kuhn A. Submicron positioning of single atoms in a microcavity. Phys Rev Lett. 2005; 95:173602. https://doi.org/10.1103/PhysRevLett.95.173602.
    [28] Bourdel T, Donner T, Ritter S, Öttl A, Köhl M, Esslinger T. Cavity qed detection of interfering matter waves. Phys Rev A. 2006; 73:043602. https://doi.org/10.1103/PhysRevA.73.043602.
    [29] Wilk T, Webster SC, Specht HP, Rempe G, Kuhn A. Polarization-controlled single photons. Phys Rev Lett. 2007; 98:063601. https://doi.org/10.1103/PhysRevLett.98.063601.
    [30] Brennecke F, Donner T, Ritter S, Bourdel T, Köhl M, Esslinger T. Cavity qed with a bose–einstein condensate. Nature. 2007; 450(7167):268–71.
    [31] Brune M, Hagley E, Dreyer J, Maître X, Maali A, Wunderlich C, Raimond JM, Haroche S. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys Rev Lett. 1996; 77:4887–90. https://doi.org/10.1103/PhysRevLett.77.4887.
    [32] Haroche S. Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary. Rev Mod Phys. 2013; 85:1083–102. https://doi.org/10.1103/RevModPhys.85.1083.
    [33] Lounis B, Orrit M. Single-photon sources. Rep Prog Phys. 2005; 68(5):1129–79. https://doi.org/10.1088/0034-4885/68/5/r04.
    [34] Miller R, Northup TE, Birnbaum KM, Boca A, Boozer AD, Kimble HJ. Trapped atoms in cavity QED: coupling quantized light and matter. J Phys B Atomic Mol Phys. 2005; 38(9):551–65. https://doi.org/10.1088/0953-4075/38/9/007.
    [35] Walther H, Varcoe BTH, Englert B-G, Becker T. Cavity quantum electrodynamics. Rep Prog Phys. 2006; 69(5):1325–82. https://doi.org/10.1088/0034-4885/69/5/r02.
    [36] Reiserer A, Rempe G. Cavity-based quantum networks with single atoms and optical photons. Rev Mod Phys. 2015; 87:1379–418. https://doi.org/10.1103/RevModPhys.87.1379.
    [37] Walther H. Experiments on cavity quantum electrodynamics. Phys Rep. 1992; 219(3-6):263–81.
    [38] Berman PR, (ed).Cavity Quantum Electrodynamics. New York: Academic Press; 1993.
    [39] Mabuchi H, Doherty A. Cavity quantum electrodynamics: coherence in context. Science. 2002; 298(5597):1372–7.
    [40] Dowling JP. Exploring the quantum: Atoms, cavities, and photons. Am J Phys. 2014; 82(1):86–7. https://doi.org/10.1119/1.4827830.
    [41] Miller R, Northup TE, Birnbaum KM, Boca A, Boozer AD, Kimble HJ. Trapped atoms in cavity QED: coupling quantized light and matter. J Phys B Atomic Mol Phys. 2005; 38(9):551–65. https://doi.org/10.1088/0953-4075/38/9/007.
    [42] Casten R. Shape phase transitions and critical-point phenomena in atomic nuclei. Nat Phys. 2006; 2(12):811–20.
    [43] Carmichael HJ. Statistical Methods in Quantum Optics. Berlin: Springer; 2008.
    [44] Meystre P, SargentIII M. Elements of Quantum Optics. Berlin Heidelberg: Springer; 1990.
    [45] Ren J, Gu Y, Zhao D, Zhang F, Zhang T, Gong Q. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection. Phys Rev Lett. 2017; 118:073604. https://doi.org/10.1103/PhysRevLett.118.073604.
    [46] Svelto O, Hanna DC. Principles of Lasers. New York: Springer; 2010.
    [47] Scully MO, Zubairy MS, et al. Quantum Optics. Cambridge, UK: Cambridge University Press; 1997.
    [48] Cohen-Tannoudji C, Reynaud S. Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam. J Phys B Atomic Mol Phys. 1977; 10(3):345–63. https://doi.org/10.1088/0022-3700/10/3/005.
    [49] Zhang S-S, Cheng H, Xin P-P, Wang H-M, Xu Z-S, Liu H-P. A sensitive detection of high rydberg atom with large dipole moment. Chin Phys B. 2018; 27(7):074207. https://doi.org/10.1088/1674-1056/27/7/074207.
    [50] Saffman M, Walker TG, Mølmer K. Quantum information with rydberg atoms. Rev Mod Phys. 2010; 82:2313–63. https://doi.org/10.1103/RevModPhys.82.2313.
    [51] Ridolfo A, Di Stefano O, Fina N, Saija R, Savasta S. Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the fano effect on photon statistics. Phys Rev Lett. 2010; 105:263601. https://doi.org/10.1103/PhysRevLett.105.263601.
    [52] Yalla R, Le Kien F, Morinaga M, Hakuta K. Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber. Phys Rev Lett. 2012; 109:063602. https://doi.org/10.1103/PhysRevLett.109.063602.
    [53] Birowosuto MD, Yokoo A, Zhang G, Tateno K, Kuramochi E, Taniyama H, Takiguchi M, Notomi M. Movable high-q nanoresonators realized by semiconductor nanowires on a si photonic crystal platform. Nat Mater. 2014; 13(3):279–85.
    [54] Aharonovich I, Englund D, Toth M. Solid-state single-photon emitters. Nat Photonics. 2016; 10(10):631–41.
    [55] Leistikow MD, Mosk AP, Yeganegi E, Huisman SR, Lagendijk A, Vos WL. Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap. Phys Rev Lett. 2011; 107:193903. https://doi.org/10.1103/PhysRevLett.107.193903.
    [56] Claudon J, Bleuse J, Malik NS, Bazin M, Jaffrennou P, Gregersen N, Sauvan C, Lalanne P, Gérard J-M. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat Photonics. 2010; 4(3):174–7.
    [57] Bleuse J, Claudon J, Creasey M, Malik NS, Gérard J-M, Maksymov I, Hugonin J-P, Lalanne P. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys Rev Lett. 2011; 106:103601. https://doi.org/10.1103/PhysRevLett.106.103601.
    [58] Liu X, Asano T, Odashima S, Nakajima H, Kumano H, Suemune I. Bright single-photon source based on an inas quantum dot in a silver-embedded nanocone structure. Appl Phys Lett. 2013; 102(13):131114. https://doi.org/10.1063/1.4801334.
    [59] Liu J, Su R, Wei Y, Yao B, da Silva SFC, Yu Y, Iles-Smith J, Srinivasan K, Rastelli A, Li J, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol. 2019; 14(6):586–93.
    [60] Kuhn A, Hennrich M, Rempe G. Deterministic single-photon source for distributed quantum networking. Phys Rev Lett. 2002; 89:067901. https://doi.org/10.1103/PhysRevLett.89.067901.
    [61] Boozer AD, Boca A, Miller R, Northup TE, Kimble HJ. Reversible state transfer between light and a single trapped atom. Phys Rev Lett. 2007; 98:193601. https://doi.org/10.1103/PhysRevLett.98.193601.
    [62] Klimov VV, Ducloy M. Spontaneous emission rate of an excited atom placed near a nanofiber. Phys Rev A. 2004; 69:013812. https://doi.org/10.1103/PhysRevA.69.013812.
    [63] Yalla R, Sadgrove M, Nayak KP, Hakuta K. Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity. Phys Rev Lett. 2014; 113:143601. https://doi.org/10.1103/PhysRevLett.113.143601.
    [64] Maksymov IS, Besbes M, Hugonin JP, Yang J, Beveratos A, Sagnes I, Robert-Philip I, Lalanne P. Metal-coated nanocylinder cavity for broadband nonclassical light emission. Phys Rev Lett. 2010; 105:180502. https://doi.org/10.1103/PhysRevLett.105.180502.
    [65] Suemune I, Nakajima H, Liu X, Odashima S, Asano T, Iijima H, Huh J-H, Idutsu Y, Sasakura H, Kumano H. Metal-coated semiconductor nanostructures and simulation of photon extraction and coupling to optical fibers for a solid-state single-photon source. Nanotechnology. 2013; 24(45):455205. https://doi.org/10.1088/0957-4484/24/45/455205.
    [66] Merkel B, Ulanowski A, Reiserer A. Coherent and purcell-enhanced emission from erbium dopants in a cryogenic high-q resonator. Phys Rev X. 2020; 10:041025. https://doi.org/10.1103/PhysRevX.10.041025.
    [67] Goban A, Hung C-L, Hood JD, Yu S-P, Muniz JA, Painter O, Kimble HJ. Superradiance for atoms trapped along a photonic crystal waveguide. Phys Rev Lett. 2015; 115:063601. https://doi.org/10.1103/PhysRevLett.115.063601.
    [68] Mitsch R, Sayrin C, Albrecht B, Schneeweiss P, Rauschenbeutel A. Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide. Nat Commun. 2014; 5(1):1–5.
    [69] Yang S, Wang Y, Sun H. Advances and prospects for whispering gallery mode microcavities. Adv Opt Mater. 2015; 3(9):1136–62. https://doi.org/10.1002/adom.201500232.
    [70] Zou C, Dong C, Cui J, Sun F, Yang Y, Wu X, Han Z, Guo G. Whispering gallery mode optical microresonators: fundamentals and applications. Sci Sinica Phys Mech Astron. 2012; 42(11):1155–75.
    [71] Matsko AB, Ilchenko VS. Optical resonators with whispering-gallery modes-part i: basics. IEEE J Sel Top Quant Electron. 2006; 12(1):3–14. https://doi.org/10.1109/JSTQE.2005.862952.
    [72] Ilchenko VS, Matsko AB. Optical resonators with whispering-gallery modes-part ii: applications. IEEE J Sel Top Quant Electron. 2006; 12(1):15–32. https://doi.org/10.1109/JSTQE.2005.862943.
    [73] Rayleigh L. CXII. the problem of the whispering gallery. Lond Edinb Dublin Philos Mag J Sci. 1910; 20(120):1001–4. https://doi.org/10.1080/14786441008636993.
    [74] Richtmyer RD. Dielectric resonators. J Appl Phys. 1939; 10(6):391–8. https://doi.org/10.1063/1.1707320.
    [75] Ashkin A, Dziedzic JM. Observation of resonances in the radiation pressure on dielectric spheres. Phys Rev Lett. 1977; 38:1351–4. https://doi.org/10.1103/PhysRevLett.38.1351.
    [76] Benner RE, Barber PW, Owen JF, Chang RK. Observation of structure resonances in the fluorescence spectra from microspheres. Phys Rev Lett. 1980; 44:475–8. https://doi.org/10.1103/PhysRevLett.44.475.
    [77] Garrett CGB, Kaiser W, Bond WL. Stimulated emission into optical whispering modes of spheres. Phys Rev. 1961; 124:1807–9. https://doi.org/10.1103/PhysRev.124.1807.
    [78] McCall SL, Levi AFJ, Slusher RE, Pearton SJ, Logan RA. Whispering-gallery mode microdisk lasers. Appl Phys Lett. 1992; 60(3):289–91. https://doi.org/10.1063/1.106688.
    [79] Gorodetsky ML, Savchenkov AA, Ilchenko VS. Ultimate q of optical microsphere resonators. Opt Lett. 1996; 21(7):453–5. https://doi.org/10.1364/OL.21.000453.
    [80] Lefèvre-Seguin V, Haroche S. Towards cavity-qed experiments with silica microspheres. Mater Sci Eng B. 1997; 48(1):53–8. https://doi.org/10.1016/S0921-5107(97)00080-9.
    [81] Vernooy DW, Ilchenko VS, Mabuchi H, Streed EW, Kimble HJ. High-q measurements of fused-silica microspheres in the near infrared. Opt Lett. 1998; 23(4):247–9. https://doi.org/10.1364/OL.23.000247.
    [82] Vernooy DW, Furusawa A, Georgiades NP, Ilchenko VS, Kimble HJ. Cavity qed with high-q whispering gallery modes. Phys Rev A. 1998; 57:2293–6. https://doi.org/10.1103/PhysRevA.57.R2293.
    [83] Chen W, Özdemir ŞK, Zhao G, Wiersig J, Yang L. Exceptional points enhance sensing in an optical microcavity. Nature. 2017; 548(7666):192–6.
    [84] Michler P. A Quantum Dot Sing le-Photon Turnstile Device. Science. 2000; 290(5500):2282–5. https://doi.org/10.1126/science.290.5500.2282. Accessed 19 Oct 2020.
    [85] Moreau E, Robert I, Gérard J, Abram I, Manin L, Thierry-Mieg V. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities. Appl Phys Lett. 2001; 79(18):2865–7.
    [86] Santori C, Fattal D, Vučković J, Solomon GS, Yamamoto Y. Indistinguishable photons from a single-photon device. Nature. 2002; 419(6907):594–7.
    [87] Pelton M, Santori C, Vucković J, Zhang B, Solomon GS, Plant J, Yamamoto Y. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys Rev Lett. 2002; 89:233602. https://doi.org/10.1103/PhysRevLett.89.233602.
    [88] Faraon A, Barclay PE, Santori C, Fu K-MC, Beausoleil RG. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nat Photonics. 2011; 5(5):301.
    [89] Artemyev MV, Woggon U, Wannemacher R, Jaschinski H, Langbein W. Light trapped in a photonic dot: Microspheres act as a cavity for quantum dot emission. Nano Lett. 2001; 1(6):309–14. https://doi.org/10.1021/nl015545l.
    [90] Bayer M, Reinecke TL, Weidner F, Larionov A, McDonald A, Forchel A. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Phys Rev Lett. 2001; 86:3168–71. https://doi.org/10.1103/PhysRevLett.86.3168.
    [91] Armani D, Kippenberg T, Spillane S, Vahala K. Ultra-high-q toroid microcavity on a chip. Nature. 2003; 421(6926):925–8.
    [92] Spillane SM, Kippenberg TJ, Painter OJ, Vahala KJ. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys Rev Lett. 2003; 91:043902. https://doi.org/10.1103/PhysRevLett.91.043902.
    [93] Louyer Y, Meschede D, Rauschenbeutel A. Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics. Phys Rev A. 2005; 72:031801. https://doi.org/10.1103/PhysRevA.72.031801.
    [94] Reithmaier JP, Sek G, Löffler A, Hofmann C, Kuhn S, Reitzenstein S, Keldysh L, Kulakovskii V, Reinecke T, Forchel A. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature. 2004; 432(7014):197–200.
    [95] Peter E, Senellart P, Martrou D, Lemaître A, Hours J, Gérard JM, Bloch J. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys Rev Lett. 2005; 95:067401. https://doi.org/10.1103/PhysRevLett.95.067401.
    [96] Park Y-S, Cook AK, Wang H. Cavity qed with diamond nanocrystals and silica microspheres. Nano Lett. 2006; 6(9):2075–9. https://doi.org/10.1021/nl061342r. PMID: 16968028.
    [97] Aoki T, Dayan B, Wilcut E, Bowen WP, Parkins AS, Kippenberg T, Vahala K, Kimble H. Observation of strong coupling between one atom and a monolithic microresonator. Nature. 2006; 443(7112):671–4.
    [98] Eisaman MD, Fan J, Migdall A, Polyakov SV. Invited review article: Single-photon sources and detectors. Rev Sci Instrum. 2011; 82(7):071101. https://doi.org/10.1063/1.3610677.
    [99] Shen J-T, Fan S. Theory of single-photon transport in a single-mode waveguide. ii. coupling to a whispering-gallery resonator containing a two-level atom. Phys Rev A. 2009; 79:023838. https://doi.org/10.1103/PhysRevA.79.023838.
    [100] Hartmann MJ, Brandao FG, Plenio MB. Strongly interacting polaritons in coupled arrays of cavities. Nat Phys. 2006; 2(12):849–55.
    [101] Xiao Y-F, Lin X-M, Gao J, Yang Y, Han Z-F, Guo G-C. Realizing quantum controlled phase flip through cavity qed. Phys Rev A. 2004; 70:042314. https://doi.org/10.1103/PhysRevA.70.042314.
    [102] Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic Crystals–molding the Flow of Light, 2nd edn. New Jersey: Princeton University Press; 2008.
    [103] David A, Benisty H, Weisbuch C. Photonic crystal light-emitting sources. Rep Prog Phys. 2012; 75(12):126501. https://doi.org/10.1088/0034-4885/75/12/126501. Accessed 14 Jan 2021.
    [104] Notomi M. Manipulating light with strongly modulated photonic crystals. Rep Prog Phys. 2010; 73(9):096501. https://doi.org/10.1088/0034-4885/73/9/096501. Accessed 14 Jan 2021.
    [105] Song B-S, Noda S, Asano T, Akahane Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nat Mater. 2005; 4(3):207–10. https://doi.org/10.1038/nmat1320. Accessed 12 Jan 2021.
    [106] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys Rev Lett. 1987; 58(20):2059–62. https://doi.org/10.1103/PhysRevLett.58.2059. Accessed 11 Jan 2021.
    [107] Krauss T. Photonic crystals in the optical regime – past, present and future. Prog Quantum Electron. 1999; 23(2):51–96. https://doi.org/10.1016/S0079-6727(99)00004-X. Accessed 11 Jan 2021.
    [108] Song D-S, Kim S-H, Park H-G, Kim C-K, Lee Y-H. Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers. Appl Phys Lett. 2002; 80(21):3901–3. https://doi.org/10.1063/1.1481984. Accessed 11 Jan 2021.
    [109] Yablonovitch E, Gmitter TJ, Meade RD, Rappe AM, Brommer KD, Joannopoulos JD. Donor and acceptor modes in photonic band structure. Phys Rev Lett. 1991; 67(24):3380–3. https://doi.org/10.1103/PhysRevLett.67.3380. Accessed 11 Jan 2021.
    [110] Painter O. Two-Dimensional Photonic Band-Gap Defect Mode Laser. Science. 1999; 284(5421):1819–21. https://doi.org/10.1126/science.284.5421.1819. Accessed 11 Jan 2021.
    [111] Ogawa S, Imada M, Yoshimoto S, Okano M, Noda S. Control of Light Emission by 3D Photonic Crystals. Science. 2004; 305(5681):227–9. https://doi.org/10.1126/science.1097968. Accessed 10 March 2021.
    [112] Lončar M, Yoshie T, Scherer A, Gogna P, Qiu Y. Low-threshold photonic crystal laser. Appl Phys Lett. 2002; 81(15):2680–2. https://doi.org/10.1063/1.1511538. Accessed 11 Jan 2021.
    [113] Zhou W, Sabarinathan J, Bhattacharya P, Kochman B, Berg EW, Yu P-C, Pang SW. Characteristics of a photonic bandgap single defect microcavity electroluminescent device. IEEE J Quantum Electron. 2001; 37(9):1153–60. https://doi.org/10.1109/3.945320. Accessed 11 Jan 2021.
    [114] Park H-G, Hwang J-K, Huh J, Ryu H-Y, Lee Y-H, Kim J-S. Nondegenerate monopole-mode two-dimensional photonic band gap laser. Appl Phys Lett. 2001; 79(19):3032–4. https://doi.org/10.1063/1.1416163. Accessed 13 Jan 2021.
    [115] Ryu H-Y, Kim S-H, Park H-G, Hwang J-K, Lee Y-H, Kim J-S. Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode. Appl Phys Lett. 2002; 80(21):3883–5. https://doi.org/10.1063/1.1480103. Accessed 11 Jan 2021.
    [116] Srinivasan K, Barclay PE, Painter O, Chen J, Cho AY, Gmachl C. Experimental demonstration of a high quality factor photonic crystal microcavity. Appl Phys Lett. 2003; 83(10):1915–7. https://doi.org/10.1063/1.1606866. Accessed 11 Jan 2021.
    [117] Nomura M, Iwamoto S, Watanabe K, Kumagai N, Nakata Y, Ishida S, Arakawa Y. Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt Express. 2006; 14(13):6308. https://doi.org/10.1364/OE.14.006308. Accessed 12 Jan 2021.
    [118] Strauf S, Hennessy K, Rakher MT, Choi Y-S, Badolato A, Andreani LC, Hu EL, Petroff PM, Bouwmeester D. Self-Tuned Quantum Dot Gain in Photonic Crystal Lasers. Phys Rev Lett. 2006; 96(12):127404. https://doi.org/10.1103/PhysRevLett.96.127404. Accessed 11 Jan 2021.
    [119] Happ TD, Kamp M, Forchel A, Gentner J-L, Goldstein L. Two-dimensional photonic crystal coupled-defect laser diode. Appl Phys Lett. 2003; 82(1):4–6. https://doi.org/10.1063/1.1527703. Accessed 11 Jan 2021.
    [120] Srinivasan K, Painter O. Momentum space design of high-Q photonic crystal optical cavities. Opt Express. 2002; 10(15):670. https://doi.org/10.1364/OE.10.000670. Accessed 13 Jan 2021.
    [121] Vuckovic J, Loncar M, Mabuchi H, Scherer A. Optimization of the Q factor in photonic crystal microcavities. IEEE J Quantum Electron. 2002; 38(7):850–6. https://doi.org/10.1109/JQE.2002.1017597. Accessed 13 Jan 2021.
    [122] Zhang Z, Qiu M. Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt Express. 2004; 12(17):3988. https://doi.org/10.1364/OPEX.12.003988. Accessed 16 Jan 2021.
    [123] Chutinan A, Noda S. Waveguides and waveguide bends in two-dimensional photonic crystal slabs. Phys Rev B. 2000; 62(7):4488–92. https://doi.org/10.1103/PhysRevB.62.4488.
    [124] Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y, Vučković J. Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal. Phys Rev Lett. 2005; 95(1):013904. https://doi.org/10.1103/PhysRevLett.95.013904. Accessed 12 Jan 2021.
    [125] Chang W-H, Chen W-Y, Chang H-S, Hsieh T-P, Chyi J-I, Hsu T-M. Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities. Phys Rev Lett. 2006; 96(11):117401. https://doi.org/10.1103/PhysRevLett.96.117401. Accessed 13 Jan 2021.
    [126] Englund D, Faraon A, Fushman I, Stoltz N, Petroff P, Vučković J. Controlling cavity reflectivity with a single quantum dot. Nature. 2007; 450(7171):857–61. https://doi.org/10.1038/nature06234. Accessed 12 March 2021.
    [127] Thon SM, Rakher MT, Kim H, Gudat J, Irvine WTM, Petroff PM, Bouwmeester D. Strong coupling through optical positioning of a quantum dot in a photonic crystal cavity. Appl Phys Lett. 2009; 94(11):111115. https://doi.org/10.1063/1.3103885. Accessed 12 March 2021.
    [128] Bennett AJ, Pooley MA, Stevenson RM, Ward MB, Patel RB, de la Giroday AB, Sköld N, Farrer I, Nicoll CA, Ritchie DA, Shields AJ. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat Phys. 2010; 6(12):947–50. https://doi.org/10.1038/nphys1780. Accessed 12 March 2021.
    [129] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu EL, Imamoǧlu A. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature. 2007; 445(7130):896–9. https://doi.org/10.1038/nature05586. _eprint: 0610034.
    [130] Barth M, Nüsse N, Löchel B, Benson O. Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity. Opt Lett. 2009; 34(7):1108. https://doi.org/10.1364/OL.34.001108. Accessed 12 March 2021.
    [131] Lyasota A, Borghardt S, Jarlov C, Dwir B, Gallo P, Rudra A, Kapon E. Integration of multiple site-controlled pyramidal quantum dot systems with photonic-crystal membrane cavities. J Cryst Growth. 2015; 414:192–5. https://doi.org/10.1016/j.jcrysgro.2014.10.028. Accessed 12 March 2021.
    [132] Gopinath A, Miyazono E, Faraon A, Rothemund PWK. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature. 2016; 535(7612):401–5. https://doi.org/10.1038/nature18287. Accessed 08 Nov 2020.
    [133] Liberal I, Engheta N. Zero-index structures as an alternative platform for quantum optics. Proc Natl Acad Sci. 2017; 114(5):822–7. https://doi.org/10.1073/pnas.1611924114.
    [134] Zhou M, Ying L, Lu L, Shi L, Zi J, Yu Z. Electromagnetic scattering laws in weyl systems. Nat Commun. 2017; 8(1):1–7.
    [135] Ying L, Zhou M, Mattei M, Liu B, Campagnola P, Goldsmith RH, Yu Z. Extended range of dipole-dipole interactions in periodically structured photonic media. Phys Rev Lett. 2019; 123:173901. https://doi.org/10.1103/PhysRevLett.123.173901.
    [136] García-Elcano I, González-Tudela A, Bravo-Abad J. Tunable and robust long-range coherent interactions between quantum emitters mediated by weyl bound states. Phys Rev Lett. 2020; 125:163602. https://doi.org/10.1103/PhysRevLett.125.163602.
    [137] Perczel J, Lukin MD. Theory of dipole radiation near a dirac photonic crystal. Phys Rev A. 2020; 101:033822. https://doi.org/10.1103/PhysRevA.101.033822.
    [138] Veronis G, Dutton RW, Fan S. Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range. J Appl Phys. 2005; 97(9):093104. https://doi.org/10.1063/1.1889248. Accessed 15 Jan 2021.
    [139] Barth M, Nüsse N, Stingl J, Löchel B, Benson O. Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities. Appl Phys Lett. 2008; 93:021112. https://doi.org/10.1063/1.2958346.
    [140] Rivoire K, Faraon A, Vučković J. Gallium phosphide photonic crystal nanocavities in the visible. Appl Phys Lett. 2008; 93:063103. https://doi.org/10.1063/1.2971200.
    [141] Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat Photonics. 2008; 2(3):185–9. https://doi.org/10.1038/nphoton.2007.299. Accessed 16 Nov 2020.
    [142] Gan X, Gao Y, Fai Mak K, Yao X, Shiue R-J, van der Zande A, Trusheim ME, Hatami F, Heinz TF, Hone J, Englund D. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl Phys Lett. 2013; 103(18):181119. https://doi.org/10.1063/1.4826679. Accessed 18 March 2021.
    [143] Gan X, Mak KF, Gao Y, You Y, Hatami F, Hone J, Heinz TF, Englund D. Strong Enhancement of Light–Matter Interaction in Graphene Coupled to a Photonic Crystal Nanocavity. Nano Lett. 2012; 12(11):5626–31. https://doi.org/10.1021/nl302746n. Accessed 18 March 2021.
    [144] Zuo Y, Yu W, Liu C, Cheng X, Qiao R, Liang J, Zhou X, Wang J, Wu M, Zhao Y, Gao P, Wu S, Sun Z, Liu K, Bai X, Liu Z. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat Nanotechnol. 2020; 15(12):987–91. https://doi.org/10.1038/s41565-020-0770-x. Accessed 18 March 2021.
    [145] Thyrrestrup H, Sapienza L, Lodahl P. Extraction of the β-factor for single quantum dots coupled to a photonic crystal waveguide. Appl Phys Lett. 2010; 96(23):231106. https://doi.org/10.1063/1.3446873. Accessed 15 March 2021.
    [146] Fleming JG, Lin S-Y. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95um. Opt Lett. 1999; 24(1):49. https://doi.org/10.1364/OL.24.000049. Accessed 16 Jan 2021.
    [147] Leistikow MD, Mosk AP, Yeganegi E, Huisman SR, Lagendijk A, Vos WL. Inhibited Spontaneous Emission of Quantum Dots Observed in a 3D Photonic Band Gap. Phys Rev Lett. 2011; 107(19):193903. https://doi.org/10.1103/PhysRevLett.107.193903. Accessed 15 Jan 2021.
    [148] Zhang F, Ren J, Shan L, Duan X, Li Y, Zhang T, Gong Q, Gu Y. Chiral cavity quantum electrodynamics with coupled nanophotonic structures. Phys Rev A. 2019; 100(5):053841. https://doi.org/10.1103/PhysRevA.100.053841. Publisher: American Physical Society.
    [149] Notomi M, Yamada K, Shinya A, Takahashi J, Takahashi C, Yokohama I. Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs. Phys Rev Lett. 2001; 87(25):253902. https://doi.org/10.1103/PhysRevLett.87.253902. Accessed 16 March 2021.
    [150] Lin SY, Fleming JG, Li ZY, El-Kady I, Biswas R, Ho KM. Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal. J Opt Soc Am B. 2003; 20(7):1538. https://doi.org/10.1364/JOSAB.20.001538. Accessed 15 Jan 2021.
    [151] Javadi A, Söllner I, Arcari M, Hansen SL, Midolo L, Mahmoodian S, Kiršansk- G, Pregnolato T, Lee EH, Song JD, Stobbe S, Lodahl P. Single-photon non-linear optics with a quantum dot in a waveguide. Nat Commun. 2015; 6:8655. https://doi.org/10.1038/ncomms9655.
    [152] Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev Mod Phys. 2010; 82(3):2257–98. https://doi.org/10.1103/RevModPhys.82.2257. _eprint: 0902.3014.
    [153] Zhou W, Zhao D, Shuai Y-C, Yang H, Chuwongin S, Chadha A, Seo J-H, Wang KX, Liu V, Ma Z, Fan S. Progress in 2D photonic crystal Fano resonance photonics. Prog Quantum Electron. 2014; 38(1):1–74. https://doi.org/10.1016/j.pquantelec.2014.01.001.
    [154] Fan S, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A. 2003; 20(3):569–72.
    [155] Ding W, Luk’yanchuk B, Qiu C-W. Ultrahigh-contrast-ratio silicon Fano diode. Phys Rev A. 2012; 85(2):025806. https://doi.org/10.1103/PhysRevA.85.025806. Accessed 17 March 2021.
    [156] Yang H, Zhao D, Chuwongin S, Seo J-H, Yang W, Shuai Y, Berggren J, Hammar M, Ma Z, Zhou W. Transfer-printed stacked nanomembrane lasers on silicon. Nat Photonics. 2012; 6(9):615–20. https://doi.org/10.1038/nphoton.2012.160. Accessed 15 Jan 2021.
    [157] Chai Z, Hu X, Gong Q. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals. J Opt. 2013; 15:085001. https://doi.org/10.1088/2040-8978/15/8/085001.
    [158] Xie J, Hu X, Li C, Wang F, Xu P, Tong L, Yang H, Gong Q. On-Chip Dual Electro-Optic and Optoelectric Modulation Based on ZnO Nanowire-Coated Photonic Crystal Nanocavity. Adv Opt Mater. 2018; 6(17):1800374. https://doi.org/10.1002/adom.201800374. Accessed 15 Jan 2021.
    [159] Della Villa A, Enoch S, Tayeb G, Pierro V, Galdi V, Capolino F. Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice. Phys Rev Lett. 2005; 94(18):183903. https://doi.org/10.1103/PhysRevLett.94.183903. Accessed 15 Jan 2021.
    [160] Jin C, Meng X, Cheng B, Li Z, Zhang D. Photonic gap in amorphous photonic materials. Phys Rev B. 2001; 63(19):195107. https://doi.org/10.1103/PhysRevB.63.195107. Accessed 17 March 2021.
    [161] Notomi M, Suzuki H, Tamamura T, Edagawa K. Lasing Action due to the Two-Dimensional Quasiperiodicity of Photonic Quasicrystals with a Penrose Lattice. Phys Rev Lett. 2004; 92(12):123906. https://doi.org/10.1103/PhysRevLett.92.123906. Accessed 15 Jan 2021.
    [162] Lodahl P, Floris van Driel A, Nikolaev IS, Irman A, Overgaag K, Vanmaekelbergh D, Vos WL. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature. 2004; 430(7000):654–7. https://doi.org/10.1038/nature02772. Accessed 15 Jan 2021.
    [163] Arcari M, Söllner I, Javadi A, Lindskov Hansen S, Mahmoodian S, Liu J, Thyrrestrup H, Lee EH, Song JD, Stobbe S, Lodahl P. Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide. Phys Rev Lett. 2014; 113(9):093603. https://doi.org/10.1103/PhysRevLett.113.093603. Accessed 15 March 2021.
    [164] Noda S, Yokoyama M, Masahiro I, Alongkarn C, Mochisuki M. Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design. Science. 2001; 293(5532):1123–5. https://doi.org/10.1126/science.1061738. Accessed 11 Jan 2021.
    [165] Zhou Y-S, Wang X-H, Gu B-Y, Wang F-H. Switching Control of Spontaneous Emission by Polarized Atoms in Two-Dimensional Photonic Crystals. Phys Rev Lett. 2006; 96(10):103601. https://doi.org/10.1103/PhysRevLett.96.103601. Accessed 15 Jan 2021.
    [166] Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities. Nat Photonics. 2007; 1(8):449–58. https://doi.org/10.1038/nphoton.2007.141. Accessed 12 Jan 2021.
    [167] Lecamp G, Lalanne P, Hugonin JP. Very Large Spontaneous-Emission β Factors in Photonic-Crystal Waveguides. Phys Rev Lett. 2007; 99(2):023902. https://doi.org/10.1103/PhysRevLett.99.023902. Accessed 14 Jan 2021.
    [168] Banaee MG, Pattantyus-Abraham AG, McCutcheon MW, Rieger GW, Young JF. Efficient coupling of photonic crystal microcavity modes to a ridge waveguide. Appl Phys Lett. 2007; 90(19):193106. https://doi.org/10.1063/1.2737369. Accessed 15 March 2021.
    [169] Bliokh KY, Rodríguez-Fortuño FJ, Nori F, Zayats AV. Spin-orbit interactions of light. Nat Photonics. 2015; 9(12):796–808. https://doi.org/10.1038/nphoton.2015.201. ISBN: doi:10.1038/nphoton.2015.201 _eprint: 1505.02864.
    [170] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P. Chiral quantum optics. Nature. 2017; 541(7638):473–80. https://doi.org/10.1038/nature21037. ISBN: 1476-4687 (Electronic)$\backslash$r0028-0836 (Linking) Publisher: Nature Publishing Group _eprint: 1608.00446.
    [171] Söllner I, Mahmoodian S, Hansen SL, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee EH, Song JD, Stobbe S, Lodahl P. Deterministic photon–emitter coupling in chiral photonic circuits. Nat Nanotechnol. 2015; 10(9):775–8. https://doi.org/10.1038/nnano.2015.159. Accessed 15 Jan 2021.
    [172] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs HM, Rupper G, Ell C, Shchekin OB, Deppe DG. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature. 2004; 432(7014):200–3. https://doi.org/10.1038/nature03119. Accessed 16 Oct 2020.
    [173] Faraon A, Fushman I, Englund D, Stoltz N, Petroff P, Vučković J. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat Phys. 2008; 4(11):859–63. https://doi.org/10.1038/nphys1078.
    [174] Fushman I, Englund D, Faraon A, Stoltz N, Petroff P, Vučković J. Controlled Phase Shifts with a Single Quantum Dot. Science. 2008; 320(5877):769–72. https://doi.org/10.1126/science.1154643. Accessed 19 Oct 2020.
    [175] Bose R, Sridharan D, Kim H, Solomon GS, Waks E. Low-Photon-Number Optical Switching with a Single Quantum Dot Coupled to a Photonic Crystal Cavity. Phys Rev Lett. 2012; 108(22):227402. https://doi.org/10.1103/PhysRevLett.108.227402. Accessed 08 Jan 2021.
    [176] Englund D, Majumdar A, Bajcsy M, Faraon A, Petroff P, Vučković J. Ultrafast Photon-Photon Interaction in a Strongly Coupled Quantum Dot-Cavity System. Phys Rev Lett. 2012; 108(9):093604. https://doi.org/10.1103/PhysRevLett.108.093604. Accessed 08 Jan 2021.
    [177] Reinhard A, Volz T, Winger M, Badolato A, Hennessy KJ, Hu EL, Imamoǧlu A. Strongly correlated photons on a chip. Nat Photonics. 2012; 6(2):93–6. https://doi.org/10.1038/nphoton.2011.321. _eprint: 1108.3053.
    [178] Müller K, Rundquist A, Fischer KA, Sarmiento T, Lagoudakis KG, Kelaita YA, Sánchez Muñoz C, Del Valle E, Laussy FP, Vučković J. Coherent generation of nonclassical light on chip via detuned photon blockade. Phys Rev Lett. 2015; 114(23):233601. https://doi.org/10.1103/PhysRevLett.114.233601. _eprint: 1408.5942.
    [179] Sommerfeld A. Über die fortpflanzung electrodynamischer wellen längs eines drahtes. Ann Phys und Chemie. 1899; 67:233–90.
    [180] Wood RW. Xlii. on a remarkable case of uneven distribution of light in a diffraction grating spectrum. Lond Edinb Dublin Philos Mag J Sci. 1902; 4(21):396–402. https://doi.org/10.1080/14786440209462857.
    [181] Zenneck J. Über die fortpflanzung ebener elektromagnetischer wellen längs einer ebenen leiterfläche und ihre beziehung zur drahtlosen telegraphie. Ann d Phys. 1907; 23:846–66.
    [182] Ritchie RH. Plasma losses by fast electrons in thin films. Phys Rev. 1957; 106:874–81. https://doi.org/10.1103/PhysRev.106.874.
    [183] Ritchie RH, Arakawa ET, Cowan JJ, Hamm RN. Surface-plasmon resonance effect in grating diffraction. Phys Rev Lett. 1968; 21:1530–3. https://doi.org/10.1103/PhysRevLett.21.1530.
    [184] Kretschmann E, Raether H. Notizen: Radiative decay of non radiative surface plasmons excited by light. Z für Naturforsh A. 1968; 23(12):2135–6. https://doi.org/10.1515/zna-1968-1247.
    [185] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Heidelberg: Springer; 1988.
    [186] Pigeon F, Salakhutdinov IF, Tishchenko AV. Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors. J Appl Phys. 2001; 90(2):852–9. https://doi.org/10.1063/1.1380407.
    [187] Burke JJ, Stegeman GI, Tamir T. Surface-polariton-like waves guided by thin, lossy metal films. Phys Rev B. 1986; 33:5186–201. https://doi.org/10.1103/PhysRevB.33.5186.
    [188] Zayats AV, Smolyaninov II, Maradudin AA. Nano-optics of surface plasmon polaritons. Phys Rep. 2005; 408(3):131–314. https://doi.org/10.1016/j.physrep.2004.11.001.
    [189] Ozbay E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science. 2006; 311(5758):189–93. https://doi.org/10.1126/science.1114849.
    [190] Lalanne P, Hugonin JP, Liu HT, Wang B. A microscopic view of the electromagnetic properties of sub- λ metallic surfaces. Surf Sci Rep. 2009; 64(10):453–69. https://doi.org/10.1016/j.surfrep.2009.07.003.
    [191] Mansuripur M, Zakharian AR, Moloney JV. Surface plasmon polaritons on metallic surfaces. Opt Photon News. 2007; 18(4):44–9. https://doi.org/10.1364/OPN.18.4.000044.
    [192] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B. 2003; 107(3):668–77. https://doi.org/10.1021/jp026731y.
    [193] Huffman CFBDR. Absorption and Scattering of Light by Small Particles. Weinheim: Wiley −VCH Verlag GmbH & Co. KGaA; 1998.
    [194] Kreibig U, Vollmer M. Optical Properties of Metal Clusters. Berlin Heidelberg: Springer; 1995.
    [195] Taminiau T, Stefani F, Segerink FB, Van Hulst N. Optical antennas direct single-molecule emission. Nat Photonics. 2008; 2(4):234–7.
    [196] Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972; 6:4370–9. https://doi.org/10.1103/PhysRevB.6.4370.
    [197] Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 2006; 440(7083):508–11.
    [198] Wiley BJ, Chen Y, McLellan JM, Xiong Y, Li Z-Y, Ginger D, Xia Y. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 2007; 7(4):1032–6. https://doi.org/10.1021/nl070214f. PMID: 17343425.
    [199] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR. Silver nanowires as surface plasmon resonators. Phys Rev Lett. 2005; 95:257403. https://doi.org/10.1103/PhysRevLett.95.257403.
    [200] Wang P, Zhang L, Xia Y, Tong L, Xu X, Ying Y. Polymer nanofibers embedded with aligned gold nanorods: A new platform for plasmonic studies and optical sensing. Nano Lett. 2012; 12(6):3145–50. https://doi.org/10.1021/nl301055f. PMID: 22582809.
    [201] Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, et al. Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotechnol. 2012; 7(10):668–72.
    [202] Peng-Fei Y, Ying G, Qi-Huang G. Surface plasmon polariton and mode transformation in a nanoscale lossy metallic cylindrical cable. Chin Phys B. 2008; 17(10):3880–93. https://doi.org/10.1088/1674-1056/17/10/055.
    [203] Wang L, Gu Y, Hu X, Gong Q. Long-range surface plasmon polariton modes with a large field localized in a nanoscale gap. Appl Phys B. 2011; 104(4):919–24.
    [204] Chen X-W, Sandoghdar V, Agio M. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett. 2009; 9(11):3756–61. https://doi.org/10.1021/nl9019424. PMID: 19754143.
    [205] Chen J, Li Z, Yue S, Xiao J, Gong Q. Plasmon-induced transparency in asymmetric t-shape single slit. Nano Lett. 2012; 12(5):2494–8. https://doi.org/10.1021/nl300659v. PMID: 22471626.
    [206] Liu M, Lee T-W, Gray SK, Guyot-Sionnest P, Pelton M. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Phys Rev Lett. 2009; 102:107401. https://doi.org/10.1103/PhysRevLett.102.107401.
    [207] Zhang W, Govorov AO, Bryant GW. Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear fano effect. Phys Rev Lett. 2006; 97:146804. https://doi.org/10.1103/PhysRevLett.97.146804.
    [208] Zhang W, Govorov AO. Quantum theory of the nonlinear fano effect in hybrid metal-semiconductor nanostructures: The case of strong nonlinearity. Phys Rev B. 2011; 84:081405. https://doi.org/10.1103/PhysRevB.84.081405.
    [209] Chang DE, Sørensen AS, Hemmer PR, Lukin MD. Quantum optics with surface plasmons. Phys Rev Lett. 2006; 97:053002. https://doi.org/10.1103/PhysRevLett.97.053002.
    [210] Berini P, De Leon I. Surface plasmon–polariton amplifiers and lasers. Nat Photonics. 2012; 6(1):16–24.
    [211] Chen J, Gan F, Wang Y, Li G. Plasmonic sensing and modulation based on fano resonances. Adv Opt Mater. 2018; 6(9):1701152. https://doi.org/10.1002/adom.201701152.
    [212] Li H, Huang Y, Hou G, Xiao A, Chen P, Liang H, Huang Y, Zhao X, Liang L, Feng X, Guan B-O. Single-molecule detection of biomarker and localized cellular photothermal therapy using an optical microfiber with nanointerface. Sci Adv. 2019; 5(12):eaax4659. https://doi.org/10.1126/sciadv.aax4659.
    [213] Sigle DO, Hugall JT, Ithurria S, Dubertret B, Baumberg JJ. Probing confined phonon modes in individual cdse nanoplatelets using surface-enhanced raman scattering. Phys Rev Lett. 2014; 113:087402. https://doi.org/10.1103/PhysRevLett.113.087402.
    [214] Chen X, Chen Y, Yan M, Qiu M. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano. 2012; 6(3):2550–7. https://doi.org/10.1021/nn2050032. PMID: 22356648.
    [215] Han B, Gao X, Shi L, Zheng Y, Hou K, Lv J, Guo J, Zhang W, Tang Z. Geometry-modulated magnetoplasmonic optical activity of au nanorod-based nanostructures. Nano Lett. 2017; 17(10):6083–9. https://doi.org/10.1021/acs.nanolett.7b02583. PMID: 28953401.
    [216] Cai Y-J, Li M, Ren X-F, Zou C-L, Xiong X, Lei H-L, Liu B-H, Guo G-P, Guo G-C. High-visibility on-chip quantum interference of single surface plasmons. Phys Rev Appl. 2014; 2:014004. https://doi.org/10.1103/PhysRevApplied.2.014004.
    [217] Li M, Zou C-L, Ren X-F, Xiong X, Cai Y-J, Guo G-P, Tong L-M, Guo G-C. Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide. Nano Lett. 2015; 15(4):2380–4. https://doi.org/10.1021/nl504636x. PMID: 25775140.
    [218] Rong K, Gan F, Shi K, Chu S, Chen J. Configurable integration of on-chip quantum dot lasers and subwavelength plasmonic waveguides. Adv Mater. 2018; 30(21):1706546. https://doi.org/10.1002/adma.201706546.
    [219] Peng P, Liu Y-C, Xu D, Cao Q-T, Lu G, Gong Q, Xiao Y-F. Enhancing coherent light-matter interactions through microcavity-engineered plasmonic resonances. Phys Rev Lett. 2017; 119:233901. https://doi.org/10.1103/PhysRevLett.119.233901.
    [220] Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H. Plasmon waveguiding in nanowires. Chem Rev. 2018; 118(6):2882–926. https://doi.org/10.1021/acs.chemrev.7b00441. PMID: 29446301.
    [221] Xu D, Xiong X, Wu L, Ren X-F, Png CE, Guo G-C, Gong Q, Xiao Y-F. Quantum plasmonics: new opportunity in fundamental and applied photonics. Adv Opt Photon. 2018; 10(4):703–56. https://doi.org/10.1364/AOP.10.000703.
    [222] Waks E, Sridharan D. Cavity qed treatment of interactions between a metal nanoparticle and a dipole emitter. Phys Rev A. 2010; 82:043845. https://doi.org/10.1103/PhysRevA.82.043845.
    [223] Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett. 2006; 96:113002. https://doi.org/10.1103/PhysRevLett.96.113002.
    [224] Akimov A, Mukherjee A, Yu C, Chang D, Zibrov A, Hemmer P, Park H, Lukin M. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature. 2007; 450(7168):402–6.
    [225] Ruppin R. Decay of an excited molecule near a small metal sphere. J Chem Phys. 1982; 76(4):1681–4. https://doi.org/10.1063/1.443196.
    [226] Kramer A, Trabesinger W, Hecht B, Wild UP. Optical near-field enhancement at a metal tip probed by a single fluorophore. Appl Phys Lett. 2002; 80(9):1652–4. https://doi.org/10.1063/1.1453479.
    [227] Dulkeith E, Ringler M, Klar TA, Feldmann J, Muñoz Javier A, Parak WJ. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett. 2005; 5(4):585–9. https://doi.org/10.1021/nl0480969. PMID: 15826091.
    [228] Trabesinger W, Kramer A, Kreiter M, Hecht B, Wild UP. Single-molecule near-field optical energy transfer microscopy. Appl Phys Lett. 2002; 81(11):2118–20. https://doi.org/10.1063/1.1506952.
    [229] Esteban R, Teperik TV, Greffet JJ. Optical patch antennas for single photon emission using surface plasmon resonances. Phys Rev Lett. 2010; 104:026802. https://doi.org/10.1103/PhysRevLett.104.026802.
    [230] Van Vlack C, Kristensen PT, Hughes S. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system. Phys Rev B. 2012; 85:075303. https://doi.org/10.1103/PhysRevB.85.075303.
    [231] Chen Y, Nielsen TR, Gregersen N, Lodahl P, Mørk J. Finite-element modeling of spontaneous emission of a quantum emitter at nanoscale proximity to plasmonic waveguides. Phys Rev B. 2010; 81:125431. https://doi.org/10.1103/PhysRevB.81.125431.
    [232] Gonzalez-Tudela A, Rodríguez FJ, Quiroga L, Tejedor C. Dissipative dynamics of a solid-state qubit coupled to surface plasmons: From non-markov to markov regimes. Phys Rev B. 2010; 82:115334. https://doi.org/10.1103/PhysRevB.82.115334.
    [233] Lee K, Chen X, Eghlidi H, Kukura P, Lettow R, Renn A, Sandoghdar V, Götzinger S. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat Photonics. 2011; 5(3):166–9.
    [234] Chu X-L, Brenner TJK, Chen X-W, Ghosh Y, Hollingsworth JA, Sandoghdar V, Götzinger S. Experimental realization of an optical antenna designed for collecting 99% of photons from a quantum emitter. Optica. 2014; 1(4):203–8. https://doi.org/10.1364/OPTICA.1.000203.
    [235] Pfab RJ, Zimmermann J, Hettich C, Gerhardt I, Renn A, Sandoghdar V. Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl. Chem Phys Lett. 2004; 387(4):490–5. https://doi.org/10.1016/j.cplett.2004.02.040.
    [236] Liaw J. Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission. IEEE J Sel Top Quant Electron. 2008; 14(6):1441–7. https://doi.org/10.1109/JSTQE.2008.916755.
    [237] Lee K-G, Eghlidi H, Chen X-W, Renn A, Götzinger S, Sandoghdar V. Spontaneous emission enhancement of a single molecule by a double-sphere nanoantenna across an interface. Opt Express. 2012; 20(21):23331–8. https://doi.org/10.1364/OE.20.023331.
    [238] Qian Z, Li Z, Hao H, Shan L, Zhang Q, Dong J, Gong Q, Gu Y. Absorption reduction of large purcell enhancement enabled by topological state-led mode coupling. Phys Rev Lett. 2021; 126:023901. https://doi.org/10.1103/PhysRevLett.126.023901.
    [239] Guo X, Qiu M, Bao J, Wiley BJ, Yang Q, Zhang X, Ma Y, Yu H, Tong L. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett. 2009; 9(12):4515–9. https://doi.org/10.1021/nl902860d. PMID: 19995088.
    [240] Jun YC, Kekatpure RD, White JS, Brongersma ML. Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Phys Rev B. 2008; 78:153111. https://doi.org/10.1103/PhysRevB.78.153111.
    [241] Lassiter JB, McGuire F, Mock JJ, Ciracì C, Hill RT, Wiley BJ, Chilkoti A, Smith DR. Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett. 2013; 13(12):5866–72. https://doi.org/10.1021/nl402660s. PMID: 24199752.
    [242] Le F, Lwin NZ, Steele JM, Käll M, Halas NJ, Nordlander P. Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. Nano Lett. 2005; 5(10):2009–13. https://doi.org/10.1021/nl0515100. PMID: 16218728.
    [243] Lévêque G, Martin OJF. Optical interactions in a plasmonic particle coupled to a metallic film. Opt Express. 2006; 14(21):9971–81. https://doi.org/10.1364/OE.14.009971.
    [244] Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 2008; 8(8):2245–52. https://doi.org/10.1021/nl080872f. PMID: 18590340.
    [245] Russell KJ, Liu T-L, Cui S, Hu EL. Large spontaneous emission enhancement in plasmonic nanocavities. Nat Photonics. 2012; 6(7):459–62.
    [246] Akselrod GM, Argyropoulos C, Hoang TB, Ciracì C, Fang C, Huang J, Smith DR, Mikkelsen MH. Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas. Nat Photonics. 2014; 8(11):835–40.
    [247] Zhang G, Jia S, Gu Y, Chen J. Brightening and guiding single-photon emission by plasmonic waveguide–slit structures on a metallic substrate. Laser Photonics Rev. 2019; 13(10):1900025. https://doi.org/10.1002/lpor.201900025.
    [248] Tserkezis C, Esteban R, Sigle DO, Mertens J, Herrmann LO, Baumberg JJ, Aizpurua J. Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps. Phys Rev A. 2015; 92:053811. https://doi.org/10.1103/PhysRevA.92.053811.
    [249] Yang G, Shen Q, Niu Y, Wei H, Bai B, Mikkelsen MH, Sun H-B. Unidirectional, ultrafast, and bright spontaneous emission source enabled by a hybrid plasmonic nanoantenna. Laser Photonics Rev. 2020; 14(3):1900213. https://doi.org/10.1002/lpor.201900213.
    [250] Yang Y, Zhen B, Hsu CW, Miller OD, Joannopoulos JD, Soljačić M. Optically thin metallic films for high-radiative-efficiency plasmonics. Nano Lett. 2016; 16(7):4110–7. https://doi.org/10.1021/acs.nanolett.6b00853. PMID: 27244596.
    [251] Hao H, Ren J, Duan X, Lu G, Khoo IC, Gong Q, Gu Y. High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon. Sci Rep. 2018; 8(1):1–11.
    [252] Chen X-W, Agio M, Sandoghdar V. Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. Phys Rev Lett. 2012; 108:233001. https://doi.org/10.1103/PhysRevLett.108.233001.
    [253] Yang G, Niu Y, Wei H, Bai B, Sun H-B. Greatly amplified spontaneous emission of colloidal quantum dots mediated by a dielectric-plasmonic hybrid nanoantenna. Nanophotonics. 2019; 8(12):2313–9. https://doi.org/10.1515/nanoph-2019-0332.
    [254] Oulton RF, Sorger VJ, Zentgraf T, Ma R-M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature. 2009; 461(7264):629–32.
    [255] Hill MT, Marell M, Leong ESP, Smalbrugge B, Zhu Y, Sun M, van Veldhoven PJ, Geluk EJ, Karouta F, Oei Y-S, Nötzel R, Ning C-Z, Smit MK. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt Express. 2009; 17(13):11107–12. https://doi.org/10.1364/OE.17.011107.
    [256] Wu X, Xiao Y, Meng C, Zhang X, Yu S, Wang Y, Yang C, Guo X, Ning CZ, Tong L. Hybrid photon-plasmon nanowire lasers. Nano Lett. 2013; 13(11):5654–9. https://doi.org/10.1021/nl403325j. PMID: 24144390.
    [257] Wang S, Wang X-Y, Li B, Chen H-Z, Wang Y-L, Dai L, Oulton RF, Ma R-M. Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit. Nat Commun. 2017; 8(1):1–8.
    [258] Wang Y, Yu J, Mao Y-F, Chen J, Wang S, Chen H-Z, Zhang Y, Wang S-Y, Chen X, Li T, et al. Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature. 2020; 581(7809):401–s5.
    [259] Ma R-M, Oulton RF. Applications of nanolasers. Nat Nanotechnol. 2019; 14(1):12–22.
    [260] Bergman DJ, Stockman MI. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys Rev Lett. 2003; 90:027402. https://doi.org/10.1103/PhysRevLett.90.027402.
    [261] Noginov M, Zhu G, Belgrave A, Bakker R, Shalaev V, Narimanov E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature. 2009; 460(7259):1110–2.
    [262] Chen H-Z, Hu J-Q, Wang S, Li B, Wang X-Y, Wang Y-L, Dai L, Ma R-M. Imaging the dark emission of spasers. Sci Adv. 2017; 3(4):e1601962. https://doi.org/10.1126/sciadv.1601962.
    [263] Lu Y-J, Kim J, Chen H-Y, Wu C, Dabidian N, Sanders CE, Wang C-Y, Lu M-Y, Li B-H, Qiu X, Chang W-H, Chen L-J, Shvets G, Shih C-K, Gwo S. Plasmonic nanolaser using epitaxially grown silver film. Science. 2012; 337(6093):450–3. https://doi.org/10.1126/science.1223504.
    [264] Ma R-M. Lasing under ultralow pumping. Nat Mater. 2019; 18(11):1152–3.
    [265] Fernandez-Bravo A, Wang D, Barnard ES, Teitelboim A, Tajon C, Guan J, Schatz GC, Cohen BE, Chan EM, Schuck PJ, et al. Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nat Mater. 2019; 18(11):1172–6.
    [266] Ma R-M, Ota S, Li Y, Yang S, Zhang X. Explosives detection in a lasing plasmon nanocavity. Nat Nanotechnol. 2014; 9(8):600.
    [267] Bellessa J, Bonnand C, Plenet JC, Mugnier J. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys Rev Lett. 2004; 93:036404. https://doi.org/10.1103/PhysRevLett.93.036404.
    [268] Gómez DE, Vernon KC, Mulvaney P, Davis TJ. Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. Nano Lett. 2010; 10(1):274–8. https://doi.org/10.1021/nl903455z. PMID: 20000744.
    [269] Savasta S, Saija R, Ridolfo A, Di Stefano O, Denti P, Borghese F. Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna. ACS Nano. 2010; 4(11):6369–76. https://doi.org/10.1021/nn100585h. PMID: 21028780.
    [270] Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ. Near-field mediated plexcitonic coupling and giant rabi splitting in individual metallic dimers. Nano Lett. 2013; 13(7):3281–6. https://doi.org/10.1021/nl4014887. PMID: 23746061.
    [271] Zengin G, Wersäll M, Nilsson S, Antosiewicz TJ, Käll M, Shegai T. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys Rev Lett. 2015; 114:157401. https://doi.org/10.1103/PhysRevLett.114.157401.
    [272] Liu R, Zhou Z-K, Yu Y-C, Zhang T, Wang H, Liu G, Wei Y, Chen H, Wang X-H. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys Rev Lett. 2017; 118:237401. https://doi.org/10.1103/PhysRevLett.118.237401.
    [273] Shang Q, Zhang S, Liu Z, Chen J, Yang P, Li C, Li W, Zhang Y, Xiong Q, Liu X, Zhang Q. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett. 2018; 18(6):3335–43. https://doi.org/10.1021/acs.nanolett.7b04847. PMID: 29722986.
    [274] Wu F, Guo J, Huang Y, Liang K, Jin L, Li J, Deng X, Jiao R, Liu Y, Zhang J, Zhang W, Yu L. Plexcitonic optical chirality: Strong exciton–plasmon coupling in chiral j-aggregate-metal nanoparticle complexes. ACS Nano. 2021; 15(2):2292–300. https://doi.org/10.1021/acsnano.0c08274. PMID: 33356158.
    [275] Qian Z, Ren J, Zhang F, Duan X, Gong Q, Gu Y. Nanoscale quantum plasmon sensing based on strong photon–exciton coupling. Nanotechnology. 2020; 31(12):125001. https://doi.org/10.1088/1361-6528/ab5dd0.
    [276] Ren J, Hao H, Qian Z, Duan X, Zhang F, Zhang T, Gong Q, Gu Y. High-dielectric constant enhanced photon-exciton coupling in an evanescent vacuum. J Opt Soc Am B. 2018; 35(6):1475–81. https://doi.org/10.1364/JOSAB.35.001475.
    [277] Trügler A, Hohenester U. Strong coupling between a metallic nanoparticle and a single molecule. Phys Rev B. 2008; 77:115403. https://doi.org/10.1103/PhysRevB.77.115403.
    [278] Hakala TK, Toppari JJ, Kuzyk A, Pettersson M, Tikkanen H, Kunttu H, Törmä P. Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules. Phys Rev Lett. 2009; 103:053602. https://doi.org/10.1103/PhysRevLett.103.053602.
    [279] Słowik K, Filter R, Straubel J, Lederer F, Rockstuhl C. Strong coupling of optical nanoantennas and atomic systems. Phys Rev B. 2013; 88:195414. https://doi.org/10.1103/PhysRevB.88.195414.
    [280] Kato S, Aoki T. Strong coupling between a trapped single atom and an all-fiber cavity. Phys Rev Lett. 2015; 115:093603. https://doi.org/10.1103/PhysRevLett.115.093603.
    [281] Esslinger T, Weidemüller M, Hemmerich A, Hänsch TW. Surface-plasmon mirror for atoms. Opt Lett. 1993; 18(6):450–2. https://doi.org/10.1364/OL.18.000450.
    [282] Chen X, Chen Y-H, Qin J, Zhao D, Ding B, Blaikie RJ, Qiu M. Mode modification of plasmonic gap resonances induced by strong coupling with molecular excitons. Nano Lett. 2017; 17(5):3246–51. https://doi.org/10.1021/acs.nanolett.7b00858. PMID: 28394619.
    [283] Pendry JB, Holden AJ, Stewart WJ, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996; 76:4773–6. https://doi.org/10.1103/PhysRevLett.76.4773.
    [284] Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech. 1999; 47(11):2075–84. https://doi.org/10.1109/22.798002.
    [285] Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004; 305(5685):788–92. https://doi.org/10.1126/science.1096796.
    [286] Shalaev VM. Optical negative-index metamaterials. Nat Photonics. 2007; 1(1):41–8.
    [287] Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX. 2020; 1(1):1–32.
    [288] Zou X, Zheng G, Yuan Q, Zang W, Chen R, Li T, Li L, Wang S, Wang Z, Zhu S. Imaging based on metalenses. PhotoniX. 2020; 1(1):1–24.
    [289] Luo J, Lai Y. Epsilon-near-zero or mu-near-zero materials composed of dielectric photonic crystals. Sci China Inf Sci. 2013; 56(12):1–10.
    [290] Huang X, Lai Y, Hang ZH, Zheng H, Chan C. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater. 2011; 10(8):582–6.
    [291] Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J. Realization of an all-dielectric zero-index optical metamaterial. Nat Photonics. 2013; 7(10):791–5.
    [292] Mahmoud AM, Engheta N. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nat Commun. 2014; 5(1):1–7.
    [293] Liberal I, Mahmoud AM, Li Y, Edwards B, Engheta N. Photonic doping of epsilon-near-zero media. Science. 2017; 355(6329):1058–62. https://doi.org/10.1126/science.aal2672.
    [294] Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp. 1968; 10(4):509–14. https://doi.org/10.1070/pu1968v010n04abeh003699.
    [295] Sheng C, Liu H, Wang Y, Zhu S, Genov D. Trapping light by mimicking gravitational lensing. Nat Photonics. 2013; 7(11):902–6.
    [296] Tsakmakidis KL, Boardman AD, Hess O. ‘trapped rainbow’storage of light in metamaterials. Nature. 2007; 450(7168):397–401.
    [297] Kildishev AV, Boltasseva A, Shalaev VM. Planar photonics with metasurfaces. Science. 2013; 339(6125). https://doi.org/10.1126/science.1232009.
    [298] Chen H-T, Taylor AJ, Yu N. A review of metasurfaces: physics and applications. Rep Prog Phys. 2016; 79(7):076401.
    [299] Ding X, Wang Z, Hu G, Liu J, Zhang K, Li H, Ratni B, Burokur SN, Wu Q, Tan J, et al. Metasurface holographic image projection based on mathematical properties of fourier transform. PhotoniX. 2020; 1(1):1–12.
    [300] Zhao R, Huang L, Wang Y. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX. 2020; 1:20.
    [301] Yu N, Genevet P, Kats MA, Aieta F, Tetienne J-P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science. 2011; 334(6054):333–7. https://doi.org/10.1126/science.1210713.
    [302] Karimi E, Schulz SA, De Leon I, Qassim H, Upham J, Boyd RW. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light: Sci Appl. 2014; 3(5):167.
    [303] Lee J, Tymchenko M, Argyropoulos C, Chen P-Y, Lu F, Demmerle F, Boehm G, Amann M-C, Alu A, Belkin MA. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature. 2014; 511(7507):65–9.
    [304] Bao Y, Lin Q, Su R, Zhou Z-K, Song J, Li J, Wang X-H. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface. Sci Adv. 2020; 6(31). https://doi.org/10.1126/sciadv.aba8761.
    [305] Jha PK, Ni X, Wu C, Wang Y, Zhang X. Metasurface-enabled remote quantum interference. Phys Rev Lett. 2015; 115:025501. https://doi.org/10.1103/PhysRevLett.115.025501.
    [306] Staude I, Pertsch T, Kivshar YS. All-dielectric resonant meta-optics lightens up. ACS Photonics. 2019; 6(4):802–14.
    [307] Vaskin A, Kolkowski R, Koenderink AF, Staude I. Light-emitting metasurfaces. Nanophotonics. 2019; 8(7):1151–98. https://doi.org/10.1515/nanoph-2019-0110.
    [308] Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science. 2019; 364(6441):eaat3100. https://doi.org/10.1126/science.aat3100.
    [309] Solntsev AS, Agarwal GS, Kivshar YY. Metasurfaces for quantum photonics. Nat Photonics. 2021; 15(5):327–36.
    [310] Jha PK, Shitrit N, Ren X, Wang Y, Zhang X. Spontaneous exciton valley coherence in transition metal dichalcogenide monolayers interfaced with an anisotropic metasurface. Phys Rev Lett. 2018; 121:116102. https://doi.org/10.1103/PhysRevLett.121.116102.
    [311] Lassalle E, Lalanne P, Aljunid S, Genevet P, Stout B, Durt T, Wilkowski D. Long-lifetime coherence in a quantum emitter induced by a metasurface. Phys Rev A. 2020; 101:013837. https://doi.org/10.1103/PhysRevA.101.013837.
    [312] Sohoni M, Jha PK, Nalabothula M, Kumar A. Interlayer exciton valleytronics in bilayer heterostructures interfaced with a phase gradient metasurface. Appl Phys Lett. 2020; 117(12):121101. https://doi.org/10.1063/5.0015087.
    [313] Jha PK, Shitrit N, Kim J, Ren X, Wang Y, Zhang X. Metasurface-mediated quantum entanglement. ACS Photonics. 2017; 5(3):971–6.
    [314] Bucher T, Vaskin A, Mupparapu R, L’́ochner FJ, George A, Chong KE, Fasold S, Neumann C, Choi D-Y, Eilenberger F, et al. Tailoring photoluminescence from mos2 monolayers by mie-resonant metasurfaces. ACS Photonics. 2019; 6(4):1002–9.
    [315] Ma X, James AR, Hartmann NF, Baldwin JK, Dominguez J, Sinclair MB, Luk TS, Wolf O, Liu S, Doorn SK, et al. Solitary oxygen dopant emission from carbon nanotubes modified by dielectric metasurfaces. ACS Nano. 2017; 11(6):6431– 9.
    [316] Lozano G, Louwers DJ, Rodr’iguez SR, Murai S, Jansen OT, Verschuuren MA, Rivas JG. Plasmonics for solid-state lighting enhanced excitation and directional emission of highly efficient light sources. Light Sci Appl. 2013; 2(5):66.
    [317] Tanaka K, Plum E, Ou JY, Uchino T, Zheludev NI. Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. Phys Rev Lett. 2010; 105:227403. https://doi.org/10.1103/PhysRevLett.105.227403.
    [318] Tran TT, Wang D, Xu Z-Q, Yang A, Toth M, Odom TW, Aharonovich I. Deterministic coupling of quantum emitters in 2d materials to plasmonic nanocavity arrays. Nano Lett. 2017; 17(4):2634–9.
    [319] Yuan S, Qiu X, Cui C, Zhu L, Wang Y, Li Y, Song J, Huang Q, Xia J. Strong photoluminescence enhancement in all-dielectric fano metasurface with high quality factor. ACS Nano. 2017; 11(11):10704–11.
    [320] Cui C, Zhou C, Yuan S, Qiu X, Zhu L, Wang Y, Li Y, Song J, Huang Q, Wang Y, et al. Multiple fano resonances in symmetry-breaking silicon metasurface for manipulating light emission. ACS Photonics. 2018; 5(10):4074–80.
    [321] Liu S, Vaskin A, Addamane S, Leung B, Tsai M-C, Yang Y, Vabishchevich PP, Keeler GA, Wang G, He X, et al. Light-emitting metasurfaces: simultaneous control of spontaneous emission and far-field radiation. Nano Lett. 2018; 18(11):6906–14.
    [322] Chen L, Achouri K, Kallos E, Caloz C. Simultaneous enhancement of light extraction and spontaneous emission using a partially reflecting metasurface cavity. Phys Rev A. 2017; 95:053808. https://doi.org/10.1103/PhysRevA.95.053808.
    [323] Abass A, Rodriguez SR-K, Ako T, Aubert T, Verschuuren M, Van Thourhout D, Beeckman J, Hens Z, Gómez Rivas J, Maes B. Active liquid crystal tuning of metallic nanoantenna enhanced light emission from colloidal quantum dots. Nano Lett. 2014; 14(10):5555–60.
    [324] Kan Y, Andersen SKH, Ding F, Kumar S, Zhao C, Bozhevolnyi SI. Metasurface-enabled generation of circularly polarized single photons. Adv Mater. 2020; 32(16):1907832. https://doi.org/10.1002/adma.201907832.
    [325] Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016; 352(6287):795–7. https://doi.org/10.1126/science.aae0330.
    [326] Maas R, Parsons J, Engheta N, Polman A. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths. Nat Photonics. 2013; 7(11):907–12.
    [327] Caldwell JD, Lindsay L, Giannini V, Vurgaftman I, Reinecke TL, Maier SA, Glembocki OJ. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics. 2015; 4(1):44–68.
    [328] Huang X, Lai Y, Hang ZH, Zheng H, Chan C. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nat Mater. 2011; 10(8):582–6.
    [329] Vassant S, Archambault A, Marquier F, Pardo F, Gennser U, Cavanna A, Pelouard JL, Greffet JJ. Epsilon-near-zero mode for active optoelectronic devices. Phys Rev Lett. 2012; 109:237401. https://doi.org/10.1103/PhysRevLett.109.237401.
    [330] Kim J, Dutta A, Naik GV, Giles AJ, Bezares FJ, Ellis CT, Tischler JG, Mahmoud AM, Caglayan H, Glembocki OJ, Kildishev AV, Caldwell JD, Boltasseva A, Engheta N. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas. Optica. 2016; 3(3):339–46. https://doi.org/10.1364/OPTICA.3.000339.
    [331] Ou J-Y, So J-K, Adamo G, Sulaev A, Wang L, Zheludev NI. Ultraviolet and visible range plasmonics in the topological insulator bi 1.5 sb 0.5 te 1.8 se 1.2. Nat Commun. 2014; 5(1):1–7.
    [332] Anderegg M, Feuerbacher B, Fitton B. Optically excited longitudinal plasmons in potassium. Phys Rev Lett. 1971; 27:1565–8. https://doi.org/10.1103/PhysRevLett.27.1565.
    [333] Vesseur EJR, Coenen T, Caglayan H, Engheta N, Polman A. Experimental verification of n=0 structures for visible light. Phys Rev Lett. 2013; 110:013902. https://doi.org/10.1103/PhysRevLett.110.013902.
    [334] Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys Rev Lett. 2006; 97:157403. https://doi.org/10.1103/PhysRevLett.97.157403.
    [335] Silveirinha MG, Engheta N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials. Phys Rev B. 2007; 76:245109. https://doi.org/10.1103/PhysRevB.76.245109.
    [336] Edwards B, Alù A, Young ME, Silveirinha M, Engheta N. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys Rev Lett. 2008; 100:033903. https://doi.org/10.1103/PhysRevLett.100.033903.
    [337] Xu J, Song G, Zhang Z, Yang Y, Chen H, Zubairy MS, Zhu S. Unidirectional single-photon generation via matched zero-index metamaterials. Phys Rev B. 2016; 94:220103. https://doi.org/10.1103/PhysRevB.94.220103.
    [338] Enoch S, Tayeb G, Sabouroux P, Guérin N, Vincent P. A metamaterial for directive emission. Phys Rev Lett. 2002; 89:213902. https://doi.org/10.1103/PhysRevLett.89.213902.
    [339] Suchowski H, O’Brien K, Wong ZJ, Salandrino A, Yin X, Zhang X. Phase mismatch–free nonlinear propagation in optical zero-index materials. Science. 2013; 342(6163):1223–6. https://doi.org/10.1126/science.1244303.
    [340] Alam MZ, De Leon I, Boyd RW. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science. 2016; 352(6287):795–7. https://doi.org/10.1126/science.aae0330. https://science.sciencemag.org/content/352/6287/795.full.pdf.
    [341] Neira AD, Olivier N, Nasir ME, Dickson W, Wurtz GA, Zayats AV. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat Commun. 2015; 6(1):1–8.
    [342] Caspani L, Kaipurath RPM, Clerici M, Ferrera M, Roger T, Kim J, Kinsey N, Pietrzyk M, Di Falco A, Shalaev VM, Boltasseva A, Faccio D. Enhanced nonlinear refractive index in ε-near-zero materials. Phys Rev Lett. 2016; 116:233901. https://doi.org/10.1103/PhysRevLett.116.233901.
    [343] Zhao Y, Yang Y, Sun H-B. Nonlinear meta-optics towards applications. PhotoniX. 2021; 2(3):1.
    [344] Engheta N, Salandrino A, Alù A. Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett. 2005; 95:095504. https://doi.org/10.1103/PhysRevLett.95.095504.
    [345] Engheta N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science. 2007; 317(5845):1698–702. https://doi.org/10.1126/science.1133268. https://science.sciencemag.org/content/317/5845/1698.full.pdf.
    [346] Alù A, Engheta N. All optical metamaterial circuit board at the nanoscale. Phys Rev Lett. 2009; 103:143902. https://doi.org/10.1103/PhysRevLett.103.143902.
    [347] Schulz SA, Tahir AA, Alam MZ, Upham J, De Leon I, Boyd RW. Optical response of dipole antennas on an epsilon-near-zero substrate. Phys Rev A. 2016; 93:063846. https://doi.org/10.1103/PhysRevA.93.063846.
    [348] Liberal I, Engheta N. Decay dynamics of quantum emitters in epsilon-near-zero cavities. In: 2016 Conference on Lasers and Electro-Optics (CLEO). San Jose: IEEE: 2016. p. 1–2.
    [349] Liberal I, Mahmoud AM, Engheta N. Geometry-invariant resonant cavities. Nat Commun. 2016; 7(1):1–7.
    [350] Alù A, Engheta N. Boosting molecular fluorescence with a plasmonic nanolauncher. Phys Rev Lett. 2009; 103:043902. https://doi.org/10.1103/PhysRevLett.103.043902.
    [351] Campione S, de Ceglia D, Vincenti MA, Scalora M, Capolino F. Electric field enhancement in ε-near-zero slabs under tm-polarized oblique incidence. Phys Rev B. 2013; 87:035120. https://doi.org/10.1103/PhysRevB.87.035120.
    [352] Sokhoyan R, Atwater HA. Quantum optical properties of a dipole emitter coupled to an ε-near-zero nanoscale waveguide. Opt Express. 2013; 21(26):32279–90. https://doi.org/10.1364/OE.21.032279.
    [353] Fleury R, Alù A. Enhanced superradiance in epsilon-near-zero plasmonic channels. Phys Rev B. 2013; 87:201101. https://doi.org/10.1103/PhysRevB.87.201101.
    [354] Liberal I, Engheta N. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities. Sci Adv. 2016; 2(10). https://doi.org/10.1126/sciadv.1600987.
    [355] Campione S, Marquier F, Hugonin J-P, Ellis AR, Klem JF, Sinclair MB, Luk TS. Directional and monochromatic thermal emitter from epsilon-near-zero conditions in semiconductor hyperbolic metamaterials. Sci Rep. 2016; 6(1):1–9.
    [356] Kamandar Dezfouli M, Gordon R, Hughes S. Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system. Phys Rev A. 2017; 95:013846. https://doi.org/10.1103/PhysRevA.95.013846.
    [357] Xiao M, Zhang ZQ, Chan CT. Surface impedance and bulk band geometric phases in one-dimensional systems. Phys Rev X. 2014; 4:021017. https://doi.org/10.1103/PhysRevX.4.021017.
    [358] Lu L, Joannopoulos JD, Soljačić M. Topological photonics. Nat Photonics. 2014; 8(11):821–9.
    [359] Khanikaev AB, Shvets G. Two-dimensional topological photonics. Nat Photonics. 2017; 11(12):763–73.
    [360] Tiecke T, Thompson JD, de Leon NP, Liu L, Vuletić V, Lukin MD. Nanophotonic quantum phase switch with a single atom. Nature. 2014; 508(7495):241–4.
    [361] McKeever J, Boca A, Boozer AD, Buck JR, Kimble HJ. Experimental realization of a one-atom laser in the regime of strong coupling. Nature. 2003; 425(6955):268–71.
    [362] Blanco-Redondo A, Bell B, Oren D, Eggleton BJ, Segev M. Topological protection of biphoton states. Science. 2018; 362(6414):568–71. https://doi.org/10.1126/science.aau4296. https://science.sciencemag.org/content/362/6414/568.full.pdf.
    [363] Wang Y, Lu Y-H, Mei F, Gao J, Li Z-M, Tang H, Zhu S-L, Jia S, Jin X-M. Direct observation of topology from single-photon dynamics. Phys Rev Lett. 2019; 122:193903. https://doi.org/10.1103/PhysRevLett.122.193903.
    [364] Mittal S, Goldschmidt EA, Hafezi M. A topological source of quantum light. Nature. 2018; 561(7724):502–6.
    [365] Xie X, Zhang W, He X, Wu S, Dang J, Peng K, Song F, Yang L, Ni H, Niu Z, Wang C, Jin K, Zhang X, Xu X. Cavity quantum electrodynamics with second-order topological corner state. Laser Photonics Rev. 2020; 14(8):1900425. https://doi.org/10.1002/lpor.201900425.
    [366] Miri M-A, Alù A. Exceptional points in optics and photonics. Science. 2019; 363(6422):eaar7709. https://doi.org/10.1126/science.aar7709.
    [367] Turner MD, Saba M, Zhang Q, Cumming BP, Schröder-Turk GE, Gu M. Miniature chiral beamsplitter based on gyroid photonic crystals. Nat Photonics. 2013; 7(10):801–5.
    [368] Defienne H, Ndagano B, Lyons A, Faccio D. Polarization entanglement-enabled quantum holography. Nat Phys. 2021; 17:591–7.
    [369] Bhaskar MK, Riedinger R, Machielse B, Levonian DS, Nguyen CT, Knall EN, Park H, Englund D, Lončar M, Sukachev DD, et al. Experimental demonstration of memory-enhanced quantum communication. Nature. 2020; 580(7801):60–4.
  • 加载中
图(1)
计量
  • 文章访问数:  4161
  • HTML全文浏览量:  13
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 录用日期:  2021-08-03
  • 网络出版日期:  2021-09-16

目录

    /

    返回文章
    返回