留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrahigh-fidelity full-color holographic display via color-aware optimization

Chun Chen, Seung-Woo Nam, Dongyeon Kim, Juhyun Lee, Yoonchan Jeong, Byoungho Lee. Ultrahigh-fidelity full-color holographic display via color-aware optimization[J]. PhotoniX. doi: 10.1186/s43074-024-00134-7
Citation: Chun Chen, Seung-Woo Nam, Dongyeon Kim, Juhyun Lee, Yoonchan Jeong, Byoungho Lee. Ultrahigh-fidelity full-color holographic display via color-aware optimization[J]. PhotoniX. doi: 10.1186/s43074-024-00134-7

doi: 10.1186/s43074-024-00134-7

Ultrahigh-fidelity full-color holographic display via color-aware optimization

Funds: This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2020-0-00548, (Sub3) Development of technology for deep learning-based real-time acquisition and pre-processing of hologram for 5G service, No.2021-0-00091, Development of real-time high-speed renderer technology for ultra-realistic hologram generation).
  • [1] Qi Y, Chang C, Xia J. Speckleless holographic display by complex modulation based on double-phase method. Opt Express. 2016;24(26):30368–78.
    [2] Akram MN, Chen X. Speckle reduction methods in laser-based picture projectors. Opt Rev. 2016;23(1):108–20.
    [3] Maimone A, Wang J. Holographic optics for thin and lightweight virtual reality. ACM Trans Graph (TOG). 2020;39(4):67–1.
    [4] Gabor D. A New Microscopi Prinnciple. Nature. 1948;161:777–8.
    [5] Jang C, Bang K, Li G, Lee B. Holographic Near-Eye Display with Expanded Eye-Box. ACM Trans Graph (TOG). 2018;37(6):14. https://doi.org/10.1145/3272127.3275069.
    [6] Chang C, Bang K, Wetzstein G, Lee B, Gao L. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica. 2020;7(11):1563–78.
    [7] Choi S, Gopakumar M, Peng Y, Kim J, O’Toole M, Wetzstein G. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. In: ACM SIGGRAPH 2022 Conference Proceedings. Association for Computing Machinery; 2022;1–9. https://doi.org/10.1145/3528233.3530734.
    [8] Shi L, Huang FC, Lopes W, Matusik W, Luebke D. Near-Eye Light Field Holographic Rendering with Spherical Waves for Wide Field of View Interactive 3D Computer Graphics. ACM Trans Graph (TOG). 2017;36(6):17. https://doi.org/10.1145/3130800.3130832.
    [9] Maimone A, Georgiou A, Kollin JS. Holographic Near-Eye Displays for Virtual and Augmented Reality. ACM Trans Graph (TOG). 2017;36(4):16. https://doi.org/10.1145/3072959.3073624.
    [10] Kim D, Nam SW, Lee B, Seo JM, Lee B. Accommodative holography: improving accommodation response for perceptually realistic holographic displays. ACM Trans Graph (TOG). 2022;41(4):1–15.
    [11] Gao Q, Liu J, Duan X, Zhao T, Li X, Liu P. Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter. Opt Express. 2017;25(7):8412–24.
    [12] Xiong J, Hsiang EL, He Z, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl. 2021;10(1):216.
    [13] Yaraş F, Kang H, Onural L. State of the Art in Holographic Displays: A Survey. J Disp Technol. 2010;6(10):443–54.
    [14] Hong J, Kim Y, Choi HJ, Hahn J, Park JH, Kim H, et al. Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]. Appl Opt. 2011;50(34):H87–115. https://doi.org/10.1364/AO.50.000H87.
    [15] Nam SW, Moon S, Lee B, Kim D, Lee S, Lee CK, et al. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens. Opt Express. 2020;28(21):30836–50.
    [16] Li G, Lee D, Jeong Y, Cho J, Lee B. Holographic display for see-through augmented reality using mirror-lens holographic optical element. Opt Lett. 2016;41(11):2486–9.
    [17] Peng Y, Choi S, Kim J, Wetzstein G. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci Adv. 2021;7(46):eabg5040.
    [18] Lee S, Kim D, Nam SW, Lee B, Cho J, Lee B. Light source optimization for partially coherent holographic displays with consideration of speckle contrast, resolution, and depth of field. Sci Rep. 2020;10(1):18832.
    [19] Wang D, Liu C, Shen C, Xing Y, Wang QH. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX. 2020;1:1–15.
    [20] Arrizon V, Carreon E, Testorf M. Implementation of Fourier array illuminators using pixelated SLM: efficiency limitations. Opt Commun. 1999;160(4–6):207–13.
    [21] Zhang H, Xie J, Liu J, Wang Y. Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection. Appl Opt. 2009;48(30):5834–41.
    [22] Kim D, Nam SW, Bang K, Lee B, Lee S, Jeong Y, et al. Vision-correcting holographic display: evaluation of aberration correcting hologram. Biomed Opt Express. 2021;12(8):5179–95.
    [23] Chakravarthula P, Tseng E, Srivastava T, Fuchs H, Heide F. Learned Hardware-in-the-loop Phase Retrieval for Holographic Near-Eye Displays. ACM Trans Graph (TOG). 2020;39(6):186.
    [24] Piao YL, Erdenebat MU, Kwon KC, Gil SK, Kim N. Chromatic-dispersion-corrected full-color holographic display using directional-view image scaling method. Appl Opt. 2019;58(5):A120–7.
    [25] Jones R, Wykes C. Holographic and speckle interferometry, 6. Cambridge University Press; 1989.
    [26] Dainty JC. Laser speckle and related phenomena, vol. 9. Springer science & business Media; 2013.
    [27] Lee D, Jang C, Bang K, Moon S, Li G, Lee B. Speckle reduction for holographic display using optical path difference and random phase generator. IEEE Trans Ind Inform. 2019;15(11):6170–8.
    [28] Takaki Y, Yokouchi M. Speckle-free and grayscale hologram reconstruction using time-multiplexing technique. Opt Express. 2011;19(8):7567–79.
    [29] Lee B, Kim D, Lee S, Chen C, Lee B. High-contrast, speckle-free, true 3D holography via binary CGH optimization. Sci Rep. 2022;12(1):2811.
    [30] Chen C, Lee B, Li NN, Chae M, Wang D, Wang QH, et al. Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Opt Express. 2021;29(10):15089–103. https://doi.org/10.1364/OE.425077.
    [31] Yoo D, Jo Y, Nam SW, Chen C, Lee B. Optimization of computer-generated holograms featuring phase randomness control. Opt Lett. 2021;46(19):4769–72.
    [32] Liu K, Wu J, He Z, Cao L. 4K-DMDNet: diffraction model-driven network for 4K computer-generated holography. Opto-Electron Adv. 2023;6(5):220135–1.
    [33] Lee J, Jeong J, Cho J, Yoo D, Lee B, Lee B. Deep neural network for multi-depth hologram generation and its training strategy. Opt Express. 2020;28(18):27137–54.
    [34] Wu J, Liu K, Sui X, Cao L. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt Lett. 2021;46(12):2908–11.
    [35] Engström D, Persson M, Bengtsson J, Goksör M. Calibration of spatial light modulators suffering from spatially varying phase response. Opt Express. 2013;21(13):16086–103.
    [36] Shi L, Li B, Matusik W. End-to-end learning of 3d phase-only holograms for holographic display. Light Sci Appl. 2022;11(1):247.
    [37] Li R, Cao L. Progress in phase calibration for liquid crystal spatial light modulators. Appl Sci. 2019;9(10):2012.
    [38] Takaki Y, Tanemoto Y. Band-limited zone plates for single-sideband holography. Appl Opt. 2009;48(34):H64–70.
    [39] Lee B, Yoo D, Jeong J, Lee S, Lee D, Lee B. Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing. Opt Lett. 2020;45(8):2148–51.
    [40] Chang C, Cui W, Gao L. Holographic multiplane near-eye display based on amplitude-only wavefront modulation. Opt Express. 2019;27(21):30960–70.
    [41] Chakravarthula P, Tseng E, Srivastava T, Fuchs H, Heide F. Learned Hardware-in-the-Loop Phase Retrieval for Holographic near-Eye Displays. ACM Trans Graph (TOG). 2020;39(6):18. https://doi.org/10.1145/3414685.3417846.
    [42] Peng Y, Choi S, Padmanaban N, Wetzstein G. Neural Holography with Camera-in-the-Loop Training. ACM Trans Graph (TOG). 2020;39(6):14. https://doi.org/10.1145/3414685.3417802.
    [43] Choi S, Kim J, Peng Y, Wetzstein G. Optimizing image quality for holographic near-eye displays with Michelson Holography. Optica. 2021;8(2):143–6. https://doi.org/10.1364/OPTICA.410622.
    [44] Chen C, Kim D, Yoo D, Lee B, Lee B. Off-axis camera-in-the-loop optimization with noise reduction strategy for high-quality hologram generation. Opt Lett. 2022;47(4):790–3.
    [45] Zhao B, Xu Q, Luo MR. Color difference evaluation for wide-color-gamut displays. JOSA A. 2020;37(8):1257–65.
    [46] Witt K. CIE guidelines for coordinated future work on industrial colour-difference evaluation. Color Res Appl. 1995;20(6):399–403.
    [47] Kaya N, Epps HH. Relationship between color and emotion: A study of college students. Coll Stud J. 2004;38(3):396–405.
    [48] Stone MC. Color and brightness appearance issues in tiled displays. IEEE Comput Graph Appl. 2001;21(5):58–66.
    [49] Sharples S, Cobb S, Moody A, Wilson JR. Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays. 2008;29(2):58–69.
    [50] Kazempourradi S, Ulusoy E, Urey H. Full-color computational holographic near-eye display. J Inf Disp. 2019;20(2):45–59.
    [51] Pi D, Liu J, Wang Y. Review of computer-generated hologram algorithms for color dynamic holographic three-dimensional display. Light Sci Appl. 2022;11(1):231.
    [52] Xue G, Liu J, Li X, Jia J, Zhang Z, Hu B, et al. Multiplexing encoding method for full-color dynamic 3D holographic display. Opt Express. 2014;22(15):18473–82.
    [53] Kozacki T, Chlipala M. Color holographic display with white light LED source and single phase only SLM. Opt Express. 2016;24(3):2189–99.
    [54] Lin SF, Kim ES. Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods. Opt Express. 2017;25(10):11389–404.
    [55] Unsplash. Unsplash License. https://unsplash.com/license. Accessed 2018.
    [56] Dozat T. Incorporating nesterov momentum into adam. Technical Report (Stanford University). 2015. Preprint at: http://cs229.stanford.edu/proj2015/054_report.pdf.
    [57] Kingma DP, Ba J. Adam: a method for stochastic optimization. 2014. arXiv preprint arXiv:1412.6980.
    [58] Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: International conference on machine learning. PMLR; 2013. pp. 1139–1147.
    [59] Le Gall DJ. The MPEG video compression algorithm. Signal Process Image Commun. 1992;4(2):129–40.
    [60] Foundation B. Big buck bunny. https://peach.blender.org/. Accessed 2013.
    [61] Zhang Y, Wang R, Peng Y, Hua W, Bao H. Color contrast enhanced rendering for optical see-through head-mounted displays. IEEE Trans Vis Comput Graph. 2021;28(12):4490–502.
    [62] Hunt R, Pointer M. A colour-appearance transform for the CIE 1931 standard colorimetric observer. Color Res Appl. 1985;10(3):165–79.
  • 加载中
图(1)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-21
  • 录用日期:  2024-05-09
  • 修回日期:  2024-04-19
  • 网络出版日期:  2024-06-01

目录

    /

    返回文章
    返回